Mathematical Foundations of Quantum Field Theory and Perturbative String Theory
Title | Mathematical Foundations of Quantum Field Theory and Perturbative String Theory PDF eBook |
Author | Hisham Sati |
Publisher | American Mathematical Soc. |
Pages | 370 |
Release | 2011-12-07 |
Genre | Mathematics |
ISBN | 0821851950 |
Conceptual progress in fundamental theoretical physics is linked with the search for the suitable mathematical structures that model the physical systems. Quantum field theory (QFT) has proven to be a rich source of ideas for mathematics for a long time. However, fundamental questions such as ``What is a QFT?'' did not have satisfactory mathematical answers, especially on spaces with arbitrary topology, fundamental for the formulation of perturbative string theory. This book contains a collection of papers highlighting the mathematical foundations of QFT and its relevance to perturbative string theory as well as the deep techniques that have been emerging in the last few years. The papers are organized under three main chapters: Foundations for Quantum Field Theory, Quantization of Field Theories, and Two-Dimensional Quantum Field Theories. An introduction, written by the editors, provides an overview of the main underlying themes that bind together the papers in the volume.
Quantum Fields and Strings: A Course for Mathematicians
Title | Quantum Fields and Strings: A Course for Mathematicians PDF eBook |
Author | Pierre Deligne |
Publisher | American Mathematical Society |
Pages | 801 |
Release | 1999-10-25 |
Genre | Mathematics |
ISBN | 0821820133 |
A run-away bestseller from the moment it hit the market in late 1999. This impressive, thick softcover offers mathematicians and mathematical physicists the opportunity to learn about the beautiful and difficult subjects of quantum field theory and string theory. Cover features an intriguing cartoon that will bring a smile to its intended audience.
Mathematical Foundations Of Quantum Field Theory
Title | Mathematical Foundations Of Quantum Field Theory PDF eBook |
Author | Albert Schwarz |
Publisher | World Scientific |
Pages | 461 |
Release | 2020-04-15 |
Genre | Science |
ISBN | 981327865X |
The book is very different from other books devoted to quantum field theory, both in the style of exposition and in the choice of topics. Written for both mathematicians and physicists, the author explains the theoretical formulation with a mixture of rigorous proofs and heuristic arguments; references are given for those who are looking for more details. The author is also careful to avoid ambiguous definitions and statements that can be found in some physics textbooks.In terms of topics, almost all other books are devoted to relativistic quantum field theory, conversely this book is concentrated on the material that does not depend on the assumptions of Lorentz-invariance and/or locality. It contains also a chapter discussing application of methods of quantum field theory to statistical physics, in particular to the derivation of the diagram techniques that appear in thermo-field dynamics and Keldysh formalism. It is not assumed that the reader is familiar with quantum mechanics; the book contains a short introduction to quantum mechanics for mathematicians and an appendix devoted to some mathematical facts used in the book.
Mathematical Foundations of Quantum Field Theory and Perturbative String Theory
Title | Mathematical Foundations of Quantum Field Theory and Perturbative String Theory PDF eBook |
Author | Hisham Sati |
Publisher | |
Pages | 366 |
Release | 2014-06-05 |
Genre | SCIENCE |
ISBN | 9780821883341 |
Perturbative Algebraic Quantum Field Theory
Title | Perturbative Algebraic Quantum Field Theory PDF eBook |
Author | Kasia Rejzner |
Publisher | Springer |
Pages | 186 |
Release | 2016-03-16 |
Genre | Science |
ISBN | 3319259016 |
Perturbative Algebraic Quantum Field Theory (pAQFT), the subject of this book, is a complete and mathematically rigorous treatment of perturbative quantum field theory (pQFT) that doesn’t require the use of divergent quantities and works on a large class of Lorenzian manifolds. We discuss in detail the examples of scalar fields, gauge theories and the effective quantum gravity. pQFT models describe a wide range of physical phenomena and have remarkable agreement with experimental results. Despite this success, the theory suffers from many conceptual problems. pAQFT is a good candidate to solve many, if not all, of these conceptual problems. Chapters 1-3 provide some background in mathematics and physics. Chapter 4 concerns classical theory of the scalar field, which is subsequently quantized in chapters 5 and 6. Chapter 7 covers gauge theory and chapter 8 discusses effective quantum gravity. The book aims to be accessible to researchers and graduate students, who are interested in the mathematical foundations of pQFT.
An Introduction to Non-Perturbative Foundations of Quantum Field Theory
Title | An Introduction to Non-Perturbative Foundations of Quantum Field Theory PDF eBook |
Author | Franco Strocchi |
Publisher | Oxford University Press, USA |
Pages | 270 |
Release | 2013-02-14 |
Genre | Science |
ISBN | 0199671575 |
The book discusses fundamental aspects of Quantum Field Theory and of Gauge theories, with attention to mathematical consistency. Basic issues of the standard model of elementary particles (Higgs mechanism and chiral symmetry breaking in quantum Chromodynamics) are treated without relying on the perturbative expansion and on instanton calculus.
Mathematical Aspects of Quantum Field Theories
Title | Mathematical Aspects of Quantum Field Theories PDF eBook |
Author | Damien Calaque |
Publisher | Springer |
Pages | 572 |
Release | 2015-01-06 |
Genre | Science |
ISBN | 3319099493 |
Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homology and factorization algebras.