Mathematical Control and Numerical Applications
Title | Mathematical Control and Numerical Applications PDF eBook |
Author | Abdeljalil Nachaoui |
Publisher | Springer Nature |
Pages | 168 |
Release | 2021-10-30 |
Genre | Mathematics |
ISBN | 3030834425 |
This book presents some sufficient mathematical content with expressive result. The aim of JANO13 is to bring together scientists to discuss their research in all the aspects of mathematics and their applications to different scientific discipline. The main topics of the conference is partial differential equations, mathematical control, numerical analysis and computer science. The conference is interested in recent developments on numerical analysis and real applications in computer science. The latter is viewed as a dynamic branch on the interface of mathematics and informatics that has been growing rapidly over the past several decades. However, its mathematical modelling and interpretation are still not well-explained and need much more clarifications. The main contributions of this book are to give some sufficient mathematical content with expressive results. As a growing field, it is gaining a lot of attention both in media and in the industry world, which will attract the interest of readers from different scientist disciplines.
Mathematical Control Theory
Title | Mathematical Control Theory PDF eBook |
Author | Eduardo D. Sontag |
Publisher | Springer Science & Business Media |
Pages | 543 |
Release | 2013-11-21 |
Genre | Mathematics |
ISBN | 1461205778 |
Geared primarily to an audience consisting of mathematically advanced undergraduate or beginning graduate students, this text may additionally be used by engineering students interested in a rigorous, proof-oriented systems course that goes beyond the classical frequency-domain material and more applied courses. The minimal mathematical background required is a working knowledge of linear algebra and differential equations. The book covers what constitutes the common core of control theory and is unique in its emphasis on foundational aspects. While covering a wide range of topics written in a standard theorem/proof style, it also develops the necessary techniques from scratch. In this second edition, new chapters and sections have been added, dealing with time optimal control of linear systems, variational and numerical approaches to nonlinear control, nonlinear controllability via Lie-algebraic methods, and controllability of recurrent nets and of linear systems with bounded controls.
Formulation and Numerical Solution of Quantum Control Problems
Title | Formulation and Numerical Solution of Quantum Control Problems PDF eBook |
Author | Alfio Borzi |
Publisher | SIAM |
Pages | 396 |
Release | 2017-07-06 |
Genre | Technology & Engineering |
ISBN | 1611974836 |
This book provides an introduction to representative nonrelativistic quantum control problems and their theoretical analysis and solution via modern computational techniques. The quantum theory framework is based on the Schr?dinger picture, and the optimization theory, which focuses on functional spaces, is based on the Lagrange formalism. The computational techniques represent recent developments that have resulted from combining modern numerical techniques for quantum evolutionary equations with sophisticated optimization schemes. Both finite and infinite-dimensional models are discussed, including the three-level Lambda system arising in quantum optics, multispin systems in NMR, a charged particle in a well potential, Bose?Einstein condensates, multiparticle spin systems, and multiparticle models in the time-dependent density functional framework. This self-contained book covers the formulation, analysis, and numerical solution of quantum control problems and bridges scientific computing, optimal control and exact controllability, optimization with differential models, and the sciences and engineering that require quantum control methods. ??
Advanced and Optimization Based Sliding Mode Control: Theory and Applications
Title | Advanced and Optimization Based Sliding Mode Control: Theory and Applications PDF eBook |
Author | Antonella Ferrara |
Publisher | SIAM |
Pages | 302 |
Release | 2019-07-01 |
Genre | Mathematics |
ISBN | 1611975840 |
A compendium of the authors recently published results, this book discusses sliding mode control of uncertain nonlinear systems, with a particular emphasis on advanced and optimization based algorithms. The authors survey classical sliding mode control theory and introduce four new methods of advanced sliding mode control. They analyze classical theory and advanced algorithms, with numerical results complementing the theoretical treatment. Case studies examine applications of the algorithms to complex robotics and power grid problems. Advanced and Optimization Based Sliding Mode Control: Theory and Applications is the first book to systematize the theory of optimization based higher order sliding mode control and illustrate advanced algorithms and their applications to real problems. It presents systematic treatment of event-triggered and model based event-triggered sliding mode control schemes, including schemes in combination with model predictive control, and presents adaptive algorithms as well as algorithms capable of dealing with state and input constraints. Additionally, the book includes simulations and experimental results obtained by applying the presented control strategies to real complex systems. This book is suitable for students and researchers interested in control theory. It will also be attractive to practitioners interested in implementing the illustrated strategies. It is accessible to anyone with a basic knowledge of control engineering, process physics, and applied mathematics.
Optimal Control Theory for Applications
Title | Optimal Control Theory for Applications PDF eBook |
Author | David G. Hull |
Publisher | Springer Science & Business Media |
Pages | 402 |
Release | 2013-03-09 |
Genre | Technology & Engineering |
ISBN | 1475741804 |
The published material represents the outgrowth of teaching analytical optimization to aerospace engineering graduate students. To make the material available to the widest audience, the prerequisites are limited to calculus and differential equations. It is also a book about the mathematical aspects of optimal control theory. It was developed in an engineering environment from material learned by the author while applying it to the solution of engineering problems. One goal of the book is to help engineering graduate students learn the fundamentals which are needed to apply the methods to engineering problems. The examples are from geometry and elementary dynamical systems so that they can be understood by all engineering students. Another goal of this text is to unify optimization by using the differential of calculus to create the Taylor series expansions needed to derive the optimality conditions of optimal control theory.
Methods and Applications of Interval Analysis
Title | Methods and Applications of Interval Analysis PDF eBook |
Author | Ramon E. Moore |
Publisher | SIAM |
Pages | 190 |
Release | 1979-01-01 |
Genre | Mathematics |
ISBN | 9781611970906 |
This book treats an important set of techniques that provide a mathematically rigorous and complete error analysis for computational results. It shows that interval analysis provides a powerful set of tools with direct applicability to important problems in scientific computing.
Extremum-Seeking Control and Applications
Title | Extremum-Seeking Control and Applications PDF eBook |
Author | Chunlei Zhang |
Publisher | Springer Science & Business Media |
Pages | 210 |
Release | 2011-10-26 |
Genre | Technology & Engineering |
ISBN | 1447122240 |
Extremum-seeking control tracks a varying maximum or minimum in a performance function such as output or cost. It attempts to determine the optimal performance of a control system as it operates, thereby reducing downtime and the need for system analysis. Extremum-seeking Control and Applications is divided into two parts. In the first, the authors review existing analog-optimization-based extremum-seeking control including gradient-, perturbation- and sliding-mode-based control designs. They then propose a novel numerical-optimization-based extremum-seeking control based on optimization algorithms and state regulation. This control design is developed for simple linear time-invariant systems and then extended for a class of feedback linearizable nonlinear systems. The two main optimization algorithms – line search and trust region methods – are analyzed for robustness. Finite-time and asymptotic state regulators are put forward for linear and nonlinear systems respectively. Further design flexibility is achieved using the robustness results of the optimization algorithms and the asymptotic state regulator by which existing nonlinear adaptive control techniques can be introduced for robust design. The approach used is easier to implement and tends to be more robust than those that use perturbation-based extremum-seeking control. The second part of the book deals with a variety of applications of extremum-seeking control: a comparative study of extremum-seeking control schemes in antilock braking system design; source seeking, formation control, collision and obstacle avoidance for groups of autonomous agents; mobile radar networks; and impedance matching. MATLAB®/Simulink® code which can be downloaded from www.springer.com/ISBN helps readers to reproduce the results presented in the text and gives them a head start for implementing the algorithms in their own applications. Extremum-seeking Control and Applications will interest academics and graduate students working in control, and industrial practitioners from a variety of backgrounds: systems, automotive, aerospace, communications, semiconductor and chemical engineering.