The Mathematical Theory of Finite Element Methods
Title | The Mathematical Theory of Finite Element Methods PDF eBook |
Author | Susanne Brenner |
Publisher | Springer Science & Business Media |
Pages | 369 |
Release | 2013-03-14 |
Genre | Mathematics |
ISBN | 1475736584 |
A rigorous and thorough mathematical introduction to the subject; A clear and concise treatment of modern fast solution techniques such as multigrid and domain decomposition algorithms; Second edition contains two new chapters, as well as many new exercises; Previous edition sold over 3000 copies worldwide
An Introduction to the Mathematical Theory of Finite Elements
Title | An Introduction to the Mathematical Theory of Finite Elements PDF eBook |
Author | J. T. Oden |
Publisher | Courier Corporation |
Pages | 450 |
Release | 2012-05-23 |
Genre | Technology & Engineering |
ISBN | 0486142213 |
This introduction to the theory of Sobolev spaces and Hilbert space methods in partial differential equations is geared toward readers of modest mathematical backgrounds. It offers coherent, accessible demonstrations of the use of these techniques in developing the foundations of the theory of finite element approximations. J. T. Oden is Director of the Institute for Computational Engineering & Sciences (ICES) at the University of Texas at Austin, and J. N. Reddy is a Professor of Engineering at Texas A&M University. They developed this essentially self-contained text from their seminars and courses for students with diverse educational backgrounds. Their effective presentation begins with introductory accounts of the theory of distributions, Sobolev spaces, intermediate spaces and duality, the theory of elliptic equations, and variational boundary value problems. The second half of the text explores the theory of finite element interpolation, finite element methods for elliptic equations, and finite element methods for initial boundary value problems. Detailed proofs of the major theorems appear throughout the text, in addition to numerous examples.
The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations
Title | The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations PDF eBook |
Author | A. K. Aziz |
Publisher | Academic Press |
Pages | 814 |
Release | 2014-05-10 |
Genre | Technology & Engineering |
ISBN | 1483267989 |
The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations is a collection of papers presented at the 1972 Symposium by the same title, held at the University of Maryland, Baltimore County Campus. This symposium relates considerable numerical analysis involved in research in both theoretical and practical aspects of the finite element method. This text is organized into three parts encompassing 34 chapters. Part I focuses on the mathematical foundations of the finite element method, including papers on theory of approximation, variational principles, the problems of perturbations, and the eigenvalue problem. Part II covers a large number of important results of both a theoretical and a practical nature. This part discusses the piecewise analytic interpolation and approximation of triangulated polygons; the Patch test for convergence of finite elements; solutions for Dirichlet problems; variational crimes in the field; and superconvergence result for the approximate solution of the heat equation by a collocation method. Part III explores the many practical aspects of finite element method. This book will be of great value to mathematicians, engineers, and physicists.
The Finite Element Method for Elliptic Problems
Title | The Finite Element Method for Elliptic Problems PDF eBook |
Author | P.G. Ciarlet |
Publisher | Elsevier |
Pages | 551 |
Release | 1978-01-01 |
Genre | Mathematics |
ISBN | 0080875254 |
The objective of this book is to analyze within reasonable limits (it is not a treatise) the basic mathematical aspects of the finite element method. The book should also serve as an introduction to current research on this subject. On the one hand, it is also intended to be a working textbook for advanced courses in Numerical Analysis, as typically taught in graduate courses in American and French universities. For example, it is the author's experience that a one-semester course (on a three-hour per week basis) can be taught from Chapters 1, 2 and 3 (with the exception of Section 3.3), while another one-semester course can be taught from Chapters 4 and 6. On the other hand, it is hoped that this book will prove to be useful for researchers interested in advanced aspects of the numerical analysis of the finite element method. In this respect, Section 3.3, Chapters 5, 7 and 8, and the sections on "Additional Bibliography and Comments should provide many suggestions for conducting seminars.
Theory and Practice of Finite Elements
Title | Theory and Practice of Finite Elements PDF eBook |
Author | Alexandre Ern |
Publisher | Springer Science & Business Media |
Pages | 531 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 1475743556 |
This text presenting the mathematical theory of finite elements is organized into three main sections. The first part develops the theoretical basis for the finite element methods, emphasizing inf-sup conditions over the more conventional Lax-Milgrim paradigm. The second and third parts address various applications and practical implementations of the method, respectively. It contains numerous examples and exercises.
Theoretical Numerical Analysis
Title | Theoretical Numerical Analysis PDF eBook |
Author | Kendall Atkinson |
Publisher | Springer Science & Business Media |
Pages | 472 |
Release | 2001-03-09 |
Genre | Mathematics |
ISBN | 0387951423 |
This book gives an introduction to functional analysis in a way that is tailored to fit the needs of the researcher or student. The book explains the basic results of functional analysis as well as relevant topics in numerical analysis. Applications of functional analysis are given by considering numerical methods for solving partial differential equations and integral equations. The material is especially useful for researchers and students who wish to work in theoretical numerical analysis and seek a background in the "tools of the trade" covered in this book.
Mathematical Aspects of Discontinuous Galerkin Methods
Title | Mathematical Aspects of Discontinuous Galerkin Methods PDF eBook |
Author | Daniele Antonio Di Pietro |
Publisher | Springer Science & Business Media |
Pages | 392 |
Release | 2011-11-03 |
Genre | Mathematics |
ISBN | 3642229808 |
This book introduces the basic ideas to build discontinuous Galerkin methods and, at the same time, incorporates several recent mathematical developments. The presentation is to a large extent self-contained and is intended for graduate students and researchers in numerical analysis. The material covers a wide range of model problems, both steady and unsteady, elaborating from advection-reaction and diffusion problems up to the Navier-Stokes equations and Friedrichs' systems. Both finite element and finite volume viewpoints are exploited to convey the main ideas underlying the design of the approximation. The analysis is presented in a rigorous mathematical setting where discrete counterparts of the key properties of the continuous problem are identified. The framework encompasses fairly general meshes regarding element shapes and hanging nodes. Salient implementation issues are also addressed.