Mathematical Aspects of Artificial Intelligence

Mathematical Aspects of Artificial Intelligence
Title Mathematical Aspects of Artificial Intelligence PDF eBook
Author Frederick Hoffman
Publisher American Mathematical Soc.
Pages 290
Release 1998
Genre Computers
ISBN 0821806114

Download Mathematical Aspects of Artificial Intelligence Book in PDF, Epub and Kindle

There exists a history of great expectations and large investments involving artificial intelligence (AI). There are also notable shortfalls and memorable disappointments. One major controversy regarding AI is just how mathematical a field it is or should be. This text includes contributions that examine the connections between AI and mathematics, demonstrating the potential for mathematical applications and exposing some of the more mathematical areas within AI. The goal is to stimulate interest in people who can contribute to the field or use its results. Included in the work by M. Newborn on the famous Deep BLue chess match. He discusses highly mathematical techniques involving graph theory, combinatorics and probability and statistics. G. Shafer offers his development of probability through probability trees with some of the results appearing here for the first time. M. Golumbic treats temporal reasoning with ties to the famous Frame Problem. His contribution involves logic, combinatorics and graph theory and leads to two chapters with logical themes. H. Kirchner explains how ordering techniques in automated reasoning systems make deduction more efficient. Constraint logic programming is discussed by C. Lassez, who shows its intimate ties to linear programming with crucial theorems going back to Fourier. V. Nalwa's work provides a brief tour of computer vision, tying it to mathematics - from combinatorics, probability and geometry to partial differential equations. All authors are gifted expositors and are current contributors to the field. The wide scope of the volume includes research problems, research tools and good motivational material for teaching.

Mathematics for Machine Learning

Mathematics for Machine Learning
Title Mathematics for Machine Learning PDF eBook
Author Marc Peter Deisenroth
Publisher Cambridge University Press
Pages 392
Release 2020-04-23
Genre Computers
ISBN 1108569323

Download Mathematics for Machine Learning Book in PDF, Epub and Kindle

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Mathematical Methods in Artificial Intelligence

Mathematical Methods in Artificial Intelligence
Title Mathematical Methods in Artificial Intelligence PDF eBook
Author Edward A. Bender
Publisher Wiley-IEEE Computer Society Press
Pages 0
Release 1996-02-10
Genre Technology & Engineering
ISBN 9780818672002

Download Mathematical Methods in Artificial Intelligence Book in PDF, Epub and Kindle

Mathematical Methods in Artificial Intelligence introduces the student to the important mathematical foundations and tools in AI and describes their applications to the design of AI algorithms. This useful text presents an introductory AI course based on the most important mathematics and its applications. It focuses on important topics that are proven useful in AI and involve the most broadly applicable mathematics. The book explores AI from three different viewpoints: goals, methods or tools, and achievements and failures. Its goals of reasoning, planning, learning, or language understanding and use are centered around the expert system idea. The tools of AI are presented in terms of what can be incorporated in the data structures. The book looks into the concepts and tools of limited structure, mathematical logic, logic-like representation, numerical information, and nonsymbolic structures. The text emphasizes the main mathematical tools for representing and manipulating knowledge symbolically. These are various forms of logic for qualitative knowledge, and probability and related concepts for quantitative knowledge. The main tools for manipulating knowledge nonsymbolically, as neural nets, are optimization methods and statistics. This material is covered in the text by topics such as trees and search, classical mathematical logic, and uncertainty and reasoning. A solutions diskette is available, please call for more information.

Research Directions in Computational Mechanics

Research Directions in Computational Mechanics
Title Research Directions in Computational Mechanics PDF eBook
Author National Research Council
Publisher National Academies Press
Pages 145
Release 1991-02-01
Genre Technology & Engineering
ISBN 0309046483

Download Research Directions in Computational Mechanics Book in PDF, Epub and Kindle

Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€"important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.

Artificial Mathematical Intelligence

Artificial Mathematical Intelligence
Title Artificial Mathematical Intelligence PDF eBook
Author Danny A. J. Gómez Ramírez
Publisher Springer Nature
Pages 268
Release 2020-10-23
Genre Mathematics
ISBN 3030502732

Download Artificial Mathematical Intelligence Book in PDF, Epub and Kindle

This volume discusses the theoretical foundations of a new inter- and intra-disciplinary meta-research discipline, which can be succinctly called cognitive metamathematics, with the ultimate goal of achieving a global instance of concrete Artificial Mathematical Intelligence (AMI). In other words, AMI looks for the construction of an (ideal) global artificial agent being able to (co-)solve interactively formal problems with a conceptual mathematical description in a human-style way. It first gives formal guidelines from the philosophical, logical, meta-mathematical, cognitive, and computational points of view supporting the formal existence of such a global AMI framework, examining how much of current mathematics can be completely generated by an interactive computer program and how close we are to constructing a machine that would be able to simulate the way a modern working mathematician handles solvable mathematical conjectures from a conceptual point of view. The thesis that it is possible to meta-model the intellectual job of a working mathematician is heuristically supported by the computational theory of mind, which posits that the mind is in fact a computational system, and by the meta-fact that genuine mathematical proofs are, in principle, algorithmically verifiable, at least theoretically. The introduction to this volume provides then the grounding multifaceted principles of cognitive metamathematics, and, at the same time gives an overview of some of the most outstanding results in this direction, keeping in mind that the main focus is human-style proofs, and not simply formal verification. The first part of the book presents the new cognitive foundations of mathematics’ program dealing with the construction of formal refinements of seminal (meta-)mathematical notions and facts. The second develops positions and formalizations of a global taxonomy of classic and new cognitive abilities, and computational tools allowing for calculation of formal conceptual blends are described. In particular, a new cognitive characterization of the Church-Turing Thesis is presented. In the last part, classic and new results concerning the co-generation of a vast amount of old and new mathematical concepts and the key parts of several standard proofs in Hilbert-style deductive systems are shown as well, filling explicitly a well-known gap in the mechanization of mathematics concerning artificial conceptual generation.

Artificial and Mathematical Theory of Computation

Artificial and Mathematical Theory of Computation
Title Artificial and Mathematical Theory of Computation PDF eBook
Author Vladimir Lifschitz
Publisher Academic Press
Pages 488
Release 2012-12-02
Genre Computers
ISBN 032314831X

Download Artificial and Mathematical Theory of Computation Book in PDF, Epub and Kindle

Artificial and Mathematical Theory of Computation is a collection of papers that discusses the technical, historical, and philosophical problems related to artificial intelligence and the mathematical theory of computation. Papers cover the logical approach to artificial intelligence; knowledge representation and common sense reasoning; automated deduction; logic programming; nonmonotonic reasoning and circumscription. One paper suggests that the design of parallel programming languages will invariably become more sophisticated as human skill in programming and software developments improves to attain faster running programs. An example of metaprogramming to systems concerns the design and control of operations of factory devices, such as robots and numerically controlled machine tools. Metaprogramming involves two design aspects: that of the activity of a single device and that of the interaction with other devices. One paper cites the application of artificial intelligence pertaining to the project "proof checker for first-order logic" at the Stanford Artificial Intelligence Laboratory. Another paper explains why the bisection algorithm widely used in computer science does not work. This book can prove valuable to engineers and researchers of electrical, computer, and mechanical engineering, as well as, for computer programmers and designers of industrial processes.

Mathematical Aspects of Logic Programming Semantics

Mathematical Aspects of Logic Programming Semantics
Title Mathematical Aspects of Logic Programming Semantics PDF eBook
Author Pascal Hitzler
Publisher CRC Press
Pages 307
Release 2016-04-19
Genre Computers
ISBN 1000218724

Download Mathematical Aspects of Logic Programming Semantics Book in PDF, Epub and Kindle

Covering the authors' own state-of-the-art research results, this book presents a rigorous, modern account of the mathematical methods and tools required for the semantic analysis of logic programs. It significantly extends the tools and methods from traditional order theory to include nonconventional methods from mathematical analysis that depend on topology, domain theory, generalized distance functions, and associated fixed-point theory. The authors closely examine the interrelationships between various semantics as well as the integration of logic programming and connectionist systems/neural networks.