Mathematical Anti-Realism and Modal Nothingism
Title | Mathematical Anti-Realism and Modal Nothingism PDF eBook |
Author | Mark Balaguer |
Publisher | Cambridge University Press |
Pages | 151 |
Release | 2023-01-05 |
Genre | Philosophy |
ISBN | 1009346040 |
This Element defends mathematical anti-realism against an underappreciated problem with that view-a problem having to do with modal truthmaking. Part I develops mathematical anti-realism, it defends that view against a number of well-known objections, and it raises a less widely discussed objection to anti-realism-an objection based on the fact that (a) mathematical anti-realists need to commit to the truth of certain kinds of modal claims, and (b) it's not clear that the truth of these modal claims is compatible with mathematical anti-realism. Part II considers various strategies that anti-realists might pursue in trying to solve this modal-truth problem with their view, it argues that there's only one viable view that anti-realists can endorse in order to solve the modal-truth problem, and it argues that the view in question-which is here called modal nothingism-is true.
Mathematical Pluralism
Title | Mathematical Pluralism PDF eBook |
Author | Graham Priest |
Publisher | |
Pages | 82 |
Release | 2024-04-16 |
Genre | Philosophy |
ISBN | 1009089269 |
Mathematical pluralism is the view that there is an irreducible plurality of pure mathematical structures, each with their own internal logics; and that qua pure mathematical structures they are all equally legitimate. Mathematical pluralism is a relatively new position on the philosophical landscape. This Element provides an introduction to the position.
Mathematics and Explanation
Title | Mathematics and Explanation PDF eBook |
Author | Christopher Pincock |
Publisher | Cambridge University Press |
Pages | 156 |
Release | 2023-05-25 |
Genre | Science |
ISBN | 1009037412 |
This Element answers four questions. Can any traditional theory of scientific explanation make sense of the place of mathematics in explanation? If traditional monist theories are inadequate, is there some way to develop a more flexible, but still monist, approach that will clarify how mathematics can help to explain? What sort of pluralism about explanation is best equipped to clarify how mathematics can help to explain in science and in mathematics itself? Finally, how can the mathematical elements of an explanation be integrated into the physical world? Some of the evidence for a novel scientific posit may be traced to the explanatory power that this posit would afford, were it to exist. Can a similar kind of explanatory evidence be provided for the existence of mathematical objects, and if not, why not?
Phenomenology and Mathematics
Title | Phenomenology and Mathematics PDF eBook |
Author | Michael Roubach |
Publisher | Cambridge University Press |
Pages | 149 |
Release | 2023-11-30 |
Genre | Science |
ISBN | 1009002287 |
This Element explores the relationship between phenomenology and mathematics. Its focus is the mathematical thought of Edmund Husserl, founder of phenomenology, but other phenomenologists and phenomenologically-oriented mathematicians, including Weyl, Becker, Gödel, and Rota, are also discussed. After outlining the basic notions of Husserl's phenomenology, the author traces Husserl's journey from his early mathematical studies. Phenomenology's core concepts, such as intention and intuition, each contributed to the emergence of a phenomenological approach to mathematics. This Element examines the phenomenological conceptions of natural number, the continuum, geometry, formal systems, and the applicability of mathematics. It also situates the phenomenological approach in relation to other schools in the philosophy of mathematics-logicism, formalism, intuitionism, Platonism, the French epistemological school, and the philosophy of mathematical practice.
The Euclidean Programme
Title | The Euclidean Programme PDF eBook |
Author | A. C. Paseau |
Publisher | Cambridge University Press |
Pages | 153 |
Release | 2024-02-29 |
Genre | Science |
ISBN | 100922199X |
The Euclidean Programme embodies a traditional sort of epistemological foundationalism, according to which knowledge – especially mathematical knowledge – is obtained by deduction from self-evident axioms or first principles. Epistemologists have examined foundationalism extensively, but neglected its historically dominant Euclidean form. By contrast, this book offers a detailed examination of Euclidean foundationalism, which, following Lakatos, the authors call the Euclidean Programme. The book rationally reconstructs the programme's key principles, showing it to be an epistemological interpretation of the axiomatic method. It then compares the reconstructed programme with select historical sources: Euclid's Elements, Aristotle's Posterior Analytics, Descartes's Discourse on Method, Pascal's On the Geometric Mind and a twentieth-century account of axiomatisation. The second half of the book philosophically assesses the programme, exploring whether various areas of contemporary mathematics conform to it. The book concludes by outlining a replacement for the Euclidean Programme.
Number Concepts
Title | Number Concepts PDF eBook |
Author | Richard Samuels |
Publisher | Cambridge University Press |
Pages | 100 |
Release | 2024-02-07 |
Genre | Philosophy |
ISBN | 100905967X |
This Element, written for researchers and students in philosophy and the behavioral sciences, reviews and critically assesses extant work on number concepts in developmental psychology and cognitive science. It has four main aims. First, it characterizes the core commitments of mainstream number cognition research, including the commitment to representationalism, the hypothesis that there exist certain number-specific cognitive systems, and the key milestones in the development of number cognition. Second, it provides a taxonomy of influential views within mainstream number cognition research, along with the central challenges these views face. Third, it identifies and critically assesses a series of core philosophical assumptions often adopted by number cognition researchers. Finally, the Element articulates and defends a novel version of pluralism about number concepts.
Philosophical Uses of Categoricity Arguments
Title | Philosophical Uses of Categoricity Arguments PDF eBook |
Author | Penelope Maddy |
Publisher | Cambridge University Press |
Pages | 75 |
Release | 2023-12-21 |
Genre | Philosophy |
ISBN | 1009432915 |
This Element addresses the viability of categoricity arguments in philosophy by focusing with some care on the specific conclusions that a sampling of prominent figures have attempted to draw – the same theorem might successfully support one such conclusion while failing to support another. It begins with Dedekind, Zermelo, and Kreisel, casting doubt on received readings of the latter two and highlighting the success of all three in achieving what are argued to be their actual goals. These earlier uses of categoricity arguments are then compared and contrasted with more recent work of Parsons and the co-authors Button and Walsh. Highlighting the roles of first- and second-order theorems, of external and internal theorems, the Element concludes that categoricity arguments have been more effective in historical cases that reflect philosophically on internal mathematical matters than in recent questions of pre-theoretic metaphysics.