Mastering Spark with R
Title | Mastering Spark with R PDF eBook |
Author | Javier Luraschi |
Publisher | "O'Reilly Media, Inc." |
Pages | 296 |
Release | 2019-10-07 |
Genre | Computers |
ISBN | 1492046329 |
If you’re like most R users, you have deep knowledge and love for statistics. But as your organization continues to collect huge amounts of data, adding tools such as Apache Spark makes a lot of sense. With this practical book, data scientists and professionals working with large-scale data applications will learn how to use Spark from R to tackle big data and big compute problems. Authors Javier Luraschi, Kevin Kuo, and Edgar Ruiz show you how to use R with Spark to solve different data analysis problems. This book covers relevant data science topics, cluster computing, and issues that should interest even the most advanced users. Analyze, explore, transform, and visualize data in Apache Spark with R Create statistical models to extract information and predict outcomes; automate the process in production-ready workflows Perform analysis and modeling across many machines using distributed computing techniques Use large-scale data from multiple sources and different formats with ease from within Spark Learn about alternative modeling frameworks for graph processing, geospatial analysis, and genomics at scale Dive into advanced topics including custom transformations, real-time data processing, and creating custom Spark extensions
Mastering Spark with R
Title | Mastering Spark with R PDF eBook |
Author | Javier Luraschi |
Publisher | O'Reilly Media |
Pages | 296 |
Release | 2019-10-07 |
Genre | Computers |
ISBN | 1492046345 |
If you’re like most R users, you have deep knowledge and love for statistics. But as your organization continues to collect huge amounts of data, adding tools such as Apache Spark makes a lot of sense. With this practical book, data scientists and professionals working with large-scale data applications will learn how to use Spark from R to tackle big data and big compute problems. Authors Javier Luraschi, Kevin Kuo, and Edgar Ruiz show you how to use R with Spark to solve different data analysis problems. This book covers relevant data science topics, cluster computing, and issues that should interest even the most advanced users. Analyze, explore, transform, and visualize data in Apache Spark with R Create statistical models to extract information and predict outcomes; automate the process in production-ready workflows Perform analysis and modeling across many machines using distributed computing techniques Use large-scale data from multiple sources and different formats with ease from within Spark Learn about alternative modeling frameworks for graph processing, geospatial analysis, and genomics at scale Dive into advanced topics including custom transformations, real-time data processing, and creating custom Spark extensions
Learning Spark
Title | Learning Spark PDF eBook |
Author | Jules S. Damji |
Publisher | O'Reilly Media |
Pages | 400 |
Release | 2020-07-16 |
Genre | Computers |
ISBN | 1492050016 |
Data is bigger, arrives faster, and comes in a variety of formats—and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, you’ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow
Mastering Machine Learning with Spark 2.x
Title | Mastering Machine Learning with Spark 2.x PDF eBook |
Author | Alex Tellez |
Publisher | Packt Publishing Ltd |
Pages | 334 |
Release | 2017-08-31 |
Genre | Computers |
ISBN | 1785282417 |
Unlock the complexities of machine learning algorithms in Spark to generate useful data insights through this data analysis tutorial About This Book Process and analyze big data in a distributed and scalable way Write sophisticated Spark pipelines that incorporate elaborate extraction Build and use regression models to predict flight delays Who This Book Is For Are you a developer with a background in machine learning and statistics who is feeling limited by the current slow and “small data” machine learning tools? Then this is the book for you! In this book, you will create scalable machine learning applications to power a modern data-driven business using Spark. We assume that you already know the machine learning concepts and algorithms and have Spark up and running (whether on a cluster or locally) and have a basic knowledge of the various libraries contained in Spark. What You Will Learn Use Spark streams to cluster tweets online Run the PageRank algorithm to compute user influence Perform complex manipulation of DataFrames using Spark Define Spark pipelines to compose individual data transformations Utilize generated models for off-line/on-line prediction Transfer the learning from an ensemble to a simpler Neural Network Understand basic graph properties and important graph operations Use GraphFrames, an extension of DataFrames to graphs, to study graphs using an elegant query language Use K-means algorithm to cluster movie reviews dataset In Detail The purpose of machine learning is to build systems that learn from data. Being able to understand trends and patterns in complex data is critical to success; it is one of the key strategies to unlock growth in the challenging contemporary marketplace today. With the meteoric rise of machine learning, developers are now keen on finding out how can they make their Spark applications smarter. This book gives you access to transform data into actionable knowledge. The book commences by defining machine learning primitives by the MLlib and H2O libraries. You will learn how to use Binary classification to detect the Higgs Boson particle in the huge amount of data produced by CERN particle collider and classify daily health activities using ensemble Methods for Multi-Class Classification. Next, you will solve a typical regression problem involving flight delay predictions and write sophisticated Spark pipelines. You will analyze Twitter data with help of the doc2vec algorithm and K-means clustering. Finally, you will build different pattern mining models using MLlib, perform complex manipulation of DataFrames using Spark and Spark SQL, and deploy your app in a Spark streaming environment. Style and approach This book takes a practical approach to help you get to grips with using Spark for analytics and to implement machine learning algorithms. We'll teach you about advanced applications of machine learning through illustrative examples. These examples will equip you to harness the potential of machine learning, through Spark, in a variety of enterprise-grade systems.
Mastering Parallel Programming with R
Title | Mastering Parallel Programming with R PDF eBook |
Author | Simon R. Chapple |
Publisher | Packt Publishing Ltd |
Pages | 244 |
Release | 2016-05-31 |
Genre | Computers |
ISBN | 1784394629 |
Master the robust features of R parallel programming to accelerate your data science computations About This Book Create R programs that exploit the computational capability of your cloud platforms and computers to the fullest Become an expert in writing the most efficient and highest performance parallel algorithms in R Get to grips with the concept of parallelism to accelerate your existing R programs Who This Book Is For This book is for R programmers who want to step beyond its inherent single-threaded and restricted memory limitations and learn how to implement highly accelerated and scalable algorithms that are a necessity for the performant processing of Big Data. No previous knowledge of parallelism is required. This book also provides for the more advanced technical programmer seeking to go beyond high level parallel frameworks. What You Will Learn Create and structure efficient load-balanced parallel computation in R, using R's built-in parallel package Deploy and utilize cloud-based parallel infrastructure from R, including launching a distributed computation on Hadoop running on Amazon Web Services (AWS) Get accustomed to parallel efficiency, and apply simple techniques to benchmark, measure speed and target improvement in your own code Develop complex parallel processing algorithms with the standard Message Passing Interface (MPI) using RMPI, pbdMPI, and SPRINT packages Build and extend a parallel R package (SPRINT) with your own MPI-based routines Implement accelerated numerical functions in R utilizing the vector processing capability of your Graphics Processing Unit (GPU) with OpenCL Understand parallel programming pitfalls, such as deadlock and numerical instability, and the approaches to handle and avoid them Build a task farm master-worker, spatial grid, and hybrid parallel R programs In Detail R is one of the most popular programming languages used in data science. Applying R to big data and complex analytic tasks requires the harnessing of scalable compute resources. Mastering Parallel Programming with R presents a comprehensive and practical treatise on how to build highly scalable and efficient algorithms in R. It will teach you a variety of parallelization techniques, from simple use of R's built-in parallel package versions of lapply(), to high-level AWS cloud-based Hadoop and Apache Spark frameworks. It will also teach you low level scalable parallel programming using RMPI and pbdMPI for message passing, applicable to clusters and supercomputers, and how to exploit thousand-fold simple processor GPUs through ROpenCL. By the end of the book, you will understand the factors that influence parallel efficiency, including assessing code performance and implementing load balancing; pitfalls to avoid, including deadlock and numerical instability issues; how to structure your code and data for the most appropriate type of parallelism for your problem domain; and how to extract the maximum performance from your R code running on a variety of computer systems. Style and approach This book leads you chapter by chapter from the easy to more complex forms of parallelism. The author's insights are presented through clear practical examples applied to a range of different problems, with comprehensive reference information for each of the R packages employed. The book can be read from start to finish, or by dipping in chapter by chapter, as each chapter describes a specific parallel approach and technology, so can be read as a standalone.
Machine Learning with Spark - Second Edition
Title | Machine Learning with Spark - Second Edition PDF eBook |
Author | Rajdeep Dua |
Publisher | |
Pages | 572 |
Release | 2016-10-31 |
Genre | |
ISBN | 9781785889936 |
Develop intelligent machine learning systems with SparkAbout This Book*Get to the grips with the latest version of Apache Spark*Utilize Spark's machine learning library to implement predictive analytics*Leverage Spark's powerful tools to load, analyze, clean, and transform your dataWho This Book Is ForIf you have a basic knowledge of machine learning and want to implement various machine-learning concepts in the context of Spark ML, this book is for you. You should be well versed with the Scala and Python languages.What You Will Learn*Get hands-on with the latest version of Spark ML*Create your first Spark program with Scala and Python*Set up and configure a development environment for Spark on your own computer, as well as on Amazon EC2*Access public machine learning datasets and use Spark to load, process, clean, and transform data*Use Spark's machine learning library to implement programs by utilizing well-known machine learning models*Deal with large-scale text data, including feature extraction and using text data as input to your machine learning models*Write Spark functions to evaluate the performance of your machine learning modelsIn DetailSpark ML is the machine learning module of Spark. It uses in-memory RDDs to process machine learning models faster for clustering, classification, and regression.This book will teach you about popular machine learning algorithms and their implementation. You will learn how various machine learning concepts are implemented in the context of Spark ML. You will start by installing Spark in a single and multinode cluster. Next you'll see how to execute Scala and Python based programs for Spark ML. Then we will take a few datasets and go deeper into clustering, classification, and regression. Toward the end, we will also cover text processing using Spark ML.Once you have learned the concepts, they can be applied to implement algorithms in either green-field implementations or to migrate existing systems to this new platform. You can migrate from Mahout or Scikit to use Spark ML.
The Book of R
Title | The Book of R PDF eBook |
Author | Tilman M. Davies |
Publisher | No Starch Press |
Pages | 833 |
Release | 2016-07-16 |
Genre | Computers |
ISBN | 1593276516 |
The Book of R is a comprehensive, beginner-friendly guide to R, the world’s most popular programming language for statistical analysis. Even if you have no programming experience and little more than a grounding in the basics of mathematics, you’ll find everything you need to begin using R effectively for statistical analysis. You’ll start with the basics, like how to handle data and write simple programs, before moving on to more advanced topics, like producing statistical summaries of your data and performing statistical tests and modeling. You’ll even learn how to create impressive data visualizations with R’s basic graphics tools and contributed packages, like ggplot2 and ggvis, as well as interactive 3D visualizations using the rgl package. Dozens of hands-on exercises (with downloadable solutions) take you from theory to practice, as you learn: –The fundamentals of programming in R, including how to write data frames, create functions, and use variables, statements, and loops –Statistical concepts like exploratory data analysis, probabilities, hypothesis tests, and regression modeling, and how to execute them in R –How to access R’s thousands of functions, libraries, and data sets –How to draw valid and useful conclusions from your data –How to create publication-quality graphics of your results Combining detailed explanations with real-world examples and exercises, this book will provide you with a solid understanding of both statistics and the depth of R’s functionality. Make The Book of R your doorway into the growing world of data analysis.