Mastering R for Quantitative Finance

Mastering R for Quantitative Finance
Title Mastering R for Quantitative Finance PDF eBook
Author Edina Berlinger
Publisher Packt Publishing Ltd
Pages 362
Release 2015-03-10
Genre Computers
ISBN 1783552085

Download Mastering R for Quantitative Finance Book in PDF, Epub and Kindle

This book is intended for those who want to learn how to use R's capabilities to build models in quantitative finance at a more advanced level. If you wish to perfectly take up the rhythm of the chapters, you need to be at an intermediate level in quantitative finance and you also need to have a reasonable knowledge of R.

Introduction to R for Quantitative Finance

Introduction to R for Quantitative Finance
Title Introduction to R for Quantitative Finance PDF eBook
Author Gergely Daróczi
Publisher Packt Publishing Ltd
Pages 253
Release 2013-11-22
Genre Computers
ISBN 1783280948

Download Introduction to R for Quantitative Finance Book in PDF, Epub and Kindle

This book is a tutorial guide for new users that aims to help you understand the basics of and become accomplished with the use of R for quantitative finance.If you are looking to use R to solve problems in quantitative finance, then this book is for you. A basic knowledge of financial theory is assumed, but familiarity with R is not required. With a focus on using R to solve a wide range of issues, this book provides useful content for both the R beginner and more experience users.

Mastering R for Quantitative Finance

Mastering R for Quantitative Finance
Title Mastering R for Quantitative Finance PDF eBook
Author Edina Berlinger
Publisher
Pages 0
Release 2015-02-28
Genre Finance
ISBN 9781783552078

Download Mastering R for Quantitative Finance Book in PDF, Epub and Kindle

About This Book Learn to manipulate, visualize, and analyze a wide range of financial data with the help of built-in functions and programming in R Understand the concepts of financial engineering and create trading strategies for complex financial instruments Explore R for asset and liability management and capital adequacy modeling Who This Book Is For This book is intended for those who want to learn how to use R's capabilities to build models in quantitative finance at a more advanced level. If you wish to perfectly take up the rhythm of the chapters, you need to be at an intermediate level in quantitative finance and you also need to have a reasonable knowledge of R.

Learning Quantitative Finance with R

Learning Quantitative Finance with R
Title Learning Quantitative Finance with R PDF eBook
Author Dr. Param Jeet
Publisher Packt Publishing Ltd
Pages 276
Release 2017-03-23
Genre Computers
ISBN 1786465256

Download Learning Quantitative Finance with R Book in PDF, Epub and Kindle

Implement machine learning, time-series analysis, algorithmic trading and more About This Book Understand the basics of R and how they can be applied in various Quantitative Finance scenarios Learn various algorithmic trading techniques and ways to optimize them using the tools available in R. Contain different methods to manage risk and explore trading using Machine Learning. Who This Book Is For If you want to learn how to use R to build quantitative finance models with ease, this book is for you. Analysts who want to learn R to solve their quantitative finance problems will also find this book useful. Some understanding of the basic financial concepts will be useful, though prior knowledge of R is not required. What You Will Learn Get to know the basics of R and how to use it in the field of Quantitative Finance Understand data processing and model building using R Explore different types of analytical techniques such as statistical analysis, time-series analysis, predictive modeling, and econometric analysis Build and analyze quantitative finance models using real-world examples How real-life examples should be used to develop strategies Performance metrics to look into before deciding upon any model Deep dive into the vast world of machine-learning based trading Get to grips with algorithmic trading and different ways of optimizing it Learn about controlling risk parameters of financial instruments In Detail The role of a quantitative analyst is very challenging, yet lucrative, so there is a lot of competition for the role in top-tier organizations and investment banks. This book is your go-to resource if you want to equip yourself with the skills required to tackle any real-world problem in quantitative finance using the popular R programming language. You'll start by getting an understanding of the basics of R and its relevance in the field of quantitative finance. Once you've built this foundation, we'll dive into the practicalities of building financial models in R. This will help you have a fair understanding of the topics as well as their implementation, as the authors have presented some use cases along with examples that are easy to understand and correlate. We'll also look at risk management and optimization techniques for algorithmic trading. Finally, the book will explain some advanced concepts, such as trading using machine learning, optimizations, exotic options, and hedging. By the end of this book, you will have a firm grasp of the techniques required to implement basic quantitative finance models in R. Style and approach This book introduces you to the essentials of quantitative finance with the help of easy-to-understand, practical examples and use cases in R. Each chapter presents a specific financial concept in detail, backed with relevant theory and the implementation of a real-life example.

Python for Finance

Python for Finance
Title Python for Finance PDF eBook
Author Yves Hilpisch
Publisher "O'Reilly Media, Inc."
Pages 720
Release 2018-12-05
Genre Computers
ISBN 1492024295

Download Python for Finance Book in PDF, Epub and Kindle

The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.

Mastering Python for Finance

Mastering Python for Finance
Title Mastering Python for Finance PDF eBook
Author James Ma Weiming
Publisher Packt Publishing Ltd
Pages 340
Release 2015-04-29
Genre Computers
ISBN 1784397873

Download Mastering Python for Finance Book in PDF, Epub and Kindle

If you are an undergraduate or graduate student, a beginner to algorithmic development and research, or a software developer in the financial industry who is interested in using Python for quantitative methods in finance, this is the book for you. It would be helpful to have a bit of familiarity with basic Python usage, but no prior experience is required.

Reproducible Finance with R

Reproducible Finance with R
Title Reproducible Finance with R PDF eBook
Author Jonathan K. Regenstein, Jr.
Publisher CRC Press
Pages 248
Release 2018-09-24
Genre Mathematics
ISBN 1351052608

Download Reproducible Finance with R Book in PDF, Epub and Kindle

Reproducible Finance with R: Code Flows and Shiny Apps for Portfolio Analysis is a unique introduction to data science for investment management that explores the three major R/finance coding paradigms, emphasizes data visualization, and explains how to build a cohesive suite of functioning Shiny applications. The full source code, asset price data and live Shiny applications are available at reproduciblefinance.com. The ideal reader works in finance or wants to work in finance and has a desire to learn R code and Shiny through simple, yet practical real-world examples. The book begins with the first step in data science: importing and wrangling data, which in the investment context means importing asset prices, converting to returns, and constructing a portfolio. The next section covers risk and tackles descriptive statistics such as standard deviation, skewness, kurtosis, and their rolling histories. The third section focuses on portfolio theory, analyzing the Sharpe Ratio, CAPM, and Fama French models. The book concludes with applications for finding individual asset contribution to risk and for running Monte Carlo simulations. For each of these tasks, the three major coding paradigms are explored and the work is wrapped into interactive Shiny dashboards.