Brownian Motion, Martingales, and Stochastic Calculus
Title | Brownian Motion, Martingales, and Stochastic Calculus PDF eBook |
Author | Jean-François Le Gall |
Publisher | Springer |
Pages | 282 |
Release | 2016-04-28 |
Genre | Mathematics |
ISBN | 3319310895 |
This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Itô’s formula, the optional stopping theorem and Girsanov’s theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Itô, stochastic calculus has proven to be one of the most important techniques of modern probability theory, and has been used in the most recent theoretical advances as well as in applications to other fields such as mathematical finance. Brownian Motion, Martingales, and Stochastic Calculus provides a strong theoretical background to the reader interested in such developments. Beginning graduate or advanced undergraduate students will benefit from this detailed approach to an essential area of probability theory. The emphasis is on concise and efficient presentation, without any concession to mathematical rigor. The material has been taught by the author for several years in graduate courses at two of the most prestigious French universities. The fact that proofs are given with full details makes the book particularly suitable for self-study. The numerous exercises help the reader to get acquainted with the tools of stochastic calculus.
Stochastic Analysis in Discrete and Continuous Settings
Title | Stochastic Analysis in Discrete and Continuous Settings PDF eBook |
Author | Nicolas Privault |
Publisher | Springer |
Pages | 322 |
Release | 2009-07-14 |
Genre | Mathematics |
ISBN | 3642023800 |
This monograph is an introduction to some aspects of stochastic analysis in the framework of normal martingales, in both discrete and continuous time. The text is mostly self-contained, except for Section 5.7 that requires some background in geometry, and should be accessible to graduate students and researchers having already received a basic training in probability. Prereq- sites are mostly limited to a knowledge of measure theory and probability, namely?-algebras,expectations,andconditionalexpectations.Ashortint- duction to stochastic calculus for continuous and jump processes is given in Chapter 2 using normal martingales, whose predictable quadratic variation is the Lebesgue measure. There already exists several books devoted to stochastic analysis for c- tinuous di?usion processes on Gaussian and Wiener spaces, cf. e.g. [51], [63], [65], [72], [83], [84], [92], [128], [134], [143], [146], [147]. The particular f- ture of this text is to simultaneously consider continuous processes and jump processes in the uni?ed framework of normal martingales.
Martingales And Stochastic Analysis
Title | Martingales And Stochastic Analysis PDF eBook |
Author | James J Yeh |
Publisher | World Scientific |
Pages | 516 |
Release | 1995-12-08 |
Genre | Mathematics |
ISBN | 9814499609 |
This book is a thorough and self-contained treatise of martingales as a tool in stochastic analysis, stochastic integrals and stochastic differential equations. The book is clearly written and details of proofs are worked out.
Martingales and Stochastic Integrals I
Title | Martingales and Stochastic Integrals I PDF eBook |
Author | Paul-Andre Meyer |
Publisher | Springer |
Pages | 96 |
Release | 2006-11-15 |
Genre | Mathematics |
ISBN | 3540379681 |
Stochastic Analysis
Title | Stochastic Analysis PDF eBook |
Author | Shigeo Kusuoka |
Publisher | Springer Nature |
Pages | 218 |
Release | 2020-10-20 |
Genre | Mathematics |
ISBN | 9811588643 |
This book is intended for university seniors and graduate students majoring in probability theory or mathematical finance. In the first chapter, results in probability theory are reviewed. Then, it follows a discussion of discrete-time martingales, continuous time square integrable martingales (particularly, continuous martingales of continuous paths), stochastic integrations with respect to continuous local martingales, and stochastic differential equations driven by Brownian motions. In the final chapter, applications to mathematical finance are given. The preliminary knowledge needed by the reader is linear algebra and measure theory. Rigorous proofs are provided for theorems, propositions, and lemmas. In this book, the definition of conditional expectations is slightly different than what is usually found in other textbooks. For the Doob–Meyer decomposition theorem, only square integrable submartingales are considered, and only elementary facts of the square integrable functions are used in the proof. In stochastic differential equations, the Euler–Maruyama approximation is used mainly to prove the uniqueness of martingale problems and the smoothness of solutions of stochastic differential equations.
Continuous Martingales and Brownian Motion
Title | Continuous Martingales and Brownian Motion PDF eBook |
Author | Daniel Revuz |
Publisher | Springer Science & Business Media |
Pages | 608 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 3662064006 |
"This is a magnificent book! Its purpose is to describe in considerable detail a variety of techniques used by probabilists in the investigation of problems concerning Brownian motion....This is THE book for a capable graduate student starting out on research in probability: the effect of working through it is as if the authors are sitting beside one, enthusiastically explaining the theory, presenting further developments as exercises." –BULLETIN OF THE L.M.S.
Martingales and Stochastic Analysis
Title | Martingales and Stochastic Analysis PDF eBook |
Author | James Yeh |
Publisher | World Scientific |
Pages | 526 |
Release | 1995 |
Genre | Mathematics |
ISBN | 9789810224776 |
This book is a thorough and self-contained treatise of martingales as a tool in stochastic analysis, stochastic integrals and stochastic differential equations. The book is clearly written and details of proofs are worked out.