Introduction to Markov Chains

Introduction to Markov Chains
Title Introduction to Markov Chains PDF eBook
Author Ehrhard Behrends
Publisher Vieweg+Teubner Verlag
Pages 237
Release 2014-07-08
Genre Mathematics
ISBN 3322901572

Download Introduction to Markov Chains Book in PDF, Epub and Kindle

Besides the investigation of general chains the book contains chapters which are concerned with eigenvalue techniques, conductance, stopping times, the strong Markov property, couplings, strong uniform times, Markov chains on arbitrary finite groups (including a crash-course in harmonic analysis), random generation and counting, Markov random fields, Gibbs fields, the Metropolis sampler, and simulated annealing. With 170 exercises.

Markov Chains

Markov Chains
Title Markov Chains PDF eBook
Author Paul A. Gagniuc
Publisher John Wiley & Sons
Pages 252
Release 2017-07-31
Genre Mathematics
ISBN 1119387558

Download Markov Chains Book in PDF, Epub and Kindle

A fascinating and instructive guide to Markov chains for experienced users and newcomers alike This unique guide to Markov chains approaches the subject along the four convergent lines of mathematics, implementation, simulation, and experimentation. It introduces readers to the art of stochastic modeling, shows how to design computer implementations, and provides extensive worked examples with case studies. Markov Chains: From Theory to Implementation and Experimentation begins with a general introduction to the history of probability theory in which the author uses quantifiable examples to illustrate how probability theory arrived at the concept of discrete-time and the Markov model from experiments involving independent variables. An introduction to simple stochastic matrices and transition probabilities is followed by a simulation of a two-state Markov chain. The notion of steady state is explored in connection with the long-run distribution behavior of the Markov chain. Predictions based on Markov chains with more than two states are examined, followed by a discussion of the notion of absorbing Markov chains. Also covered in detail are topics relating to the average time spent in a state, various chain configurations, and n-state Markov chain simulations used for verifying experiments involving various diagram configurations. • Fascinating historical notes shed light on the key ideas that led to the development of the Markov model and its variants • Various configurations of Markov Chains and their limitations are explored at length • Numerous examples—from basic to complex—are presented in a comparative manner using a variety of color graphics • All algorithms presented can be analyzed in either Visual Basic, Java Script, or PHP • Designed to be useful to professional statisticians as well as readers without extensive knowledge of probability theory Covering both the theory underlying the Markov model and an array of Markov chain implementations, within a common conceptual framework, Markov Chains: From Theory to Implementation and Experimentation is a stimulating introduction to and a valuable reference for those wishing to deepen their understanding of this extremely valuable statistical tool. Paul A. Gagniuc, PhD, is Associate Professor at Polytechnic University of Bucharest, Romania. He obtained his MS and his PhD in genetics at the University of Bucharest. Dr. Gagniuc’s work has been published in numerous high profile scientific journals, ranging from the Public Library of Science to BioMed Central and Nature journals. He is the recipient of several awards for exceptional scientific results and a highly active figure in the review process for different scientific areas.

Markov Set-Chains

Markov Set-Chains
Title Markov Set-Chains PDF eBook
Author Darald J. Hartfiel
Publisher Springer
Pages 135
Release 2006-11-14
Genre Mathematics
ISBN 3540687114

Download Markov Set-Chains Book in PDF, Epub and Kindle

In this study extending classical Markov chain theory to handle fluctuating transition matrices, the author develops a theory of Markov set-chains and provides numerous examples showing how that theory can be applied. Chapters are concluded with a discussion of related research. Readers who can benefit from this monograph are those interested in, or involved with, systems whose data is imprecise or that fluctuate with time. A background equivalent to a course in linear algebra and one in probability theory should be sufficient.

Probability and Random Processes for Electrical and Computer Engineers

Probability and Random Processes for Electrical and Computer Engineers
Title Probability and Random Processes for Electrical and Computer Engineers PDF eBook
Author John A. Gubner
Publisher Cambridge University Press
Pages 4
Release 2006-06-01
Genre Technology & Engineering
ISBN 1139457179

Download Probability and Random Processes for Electrical and Computer Engineers Book in PDF, Epub and Kindle

The theory of probability is a powerful tool that helps electrical and computer engineers to explain, model, analyze, and design the technology they develop. The text begins at the advanced undergraduate level, assuming only a modest knowledge of probability, and progresses through more complex topics mastered at graduate level. The first five chapters cover the basics of probability and both discrete and continuous random variables. The later chapters have a more specialized coverage, including random vectors, Gaussian random vectors, random processes, Markov Chains, and convergence. Describing tools and results that are used extensively in the field, this is more than a textbook; it is also a reference for researchers working in communications, signal processing, and computer network traffic analysis. With over 300 worked examples, some 800 homework problems, and sections for exam preparation, this is an essential companion for advanced undergraduate and graduate students. Further resources for this title, including solutions (for Instructors only), are available online at www.cambridge.org/9780521864701.

Markov Chains and Stochastic Stability

Markov Chains and Stochastic Stability
Title Markov Chains and Stochastic Stability PDF eBook
Author Sean Meyn
Publisher Cambridge University Press
Pages 623
Release 2009-04-02
Genre Mathematics
ISBN 0521731828

Download Markov Chains and Stochastic Stability Book in PDF, Epub and Kindle

New up-to-date edition of this influential classic on Markov chains in general state spaces. Proofs are rigorous and concise, the range of applications is broad and knowledgeable, and key ideas are accessible to practitioners with limited mathematical background. New commentary by Sean Meyn, including updated references, reflects developments since 1996.

Discrete-Time Markov Chains

Discrete-Time Markov Chains
Title Discrete-Time Markov Chains PDF eBook
Author George Yin
Publisher Springer Science & Business Media
Pages 372
Release 2005
Genre Business & Economics
ISBN 9780387219486

Download Discrete-Time Markov Chains Book in PDF, Epub and Kindle

Focusing on discrete-time-scale Markov chains, the contents of this book are an outgrowth of some of the authors' recent research. The motivation stems from existing and emerging applications in optimization and control of complex hybrid Markovian systems in manufacturing, wireless communication, and financial engineering. Much effort in this book is devoted to designing system models arising from these applications, analyzing them via analytic and probabilistic techniques, and developing feasible computational algorithms so as to reduce the inherent complexity. This book presents results including asymptotic expansions of probability vectors, structural properties of occupation measures, exponential bounds, aggregation and decomposition and associated limit processes, and interface of discrete-time and continuous-time systems. One of the salient features is that it contains a diverse range of applications on filtering, estimation, control, optimization, and Markov decision processes, and financial engineering. This book will be an important reference for researchers in the areas of applied probability, control theory, operations research, as well as for practitioners who use optimization techniques. Part of the book can also be used in a graduate course of applied probability, stochastic processes, and applications.

Introduction to the Numerical Solution of Markov Chains

Introduction to the Numerical Solution of Markov Chains
Title Introduction to the Numerical Solution of Markov Chains PDF eBook
Author William J. Stewart
Publisher Princeton University Press
Pages 561
Release 1994-12-04
Genre Mathematics
ISBN 0691036993

Download Introduction to the Numerical Solution of Markov Chains Book in PDF, Epub and Kindle

Markov Chains -- Direct Methods -- Iterative Methods -- Projection Methods -- Block Hessenberg Matrices -- Decompositional Methods -- LI-Cyclic Markov -- Chains -- Transient Solutions -- Stochastic Automata Networks -- Software.