Marine and Hydrokinetic Energy Technology
Title | Marine and Hydrokinetic Energy Technology PDF eBook |
Author | United States. Congress. House. Committee on Science and Technology (2007). Subcommittee on Energy and Environment |
Publisher | |
Pages | 88 |
Release | 2010 |
Genre | Nature |
ISBN |
An Evaluation of the U.S. Department of Energy's Marine and Hydrokinetic Resource Assessments
Title | An Evaluation of the U.S. Department of Energy's Marine and Hydrokinetic Resource Assessments PDF eBook |
Author | National Research Council |
Publisher | National Academies Press |
Pages | 169 |
Release | 2013-04-23 |
Genre | Science |
ISBN | 0309270049 |
Increasing renewable energy development, both within the United States and abroad, has rekindled interest in the potential for marine and hydrokinetic (MHK) resources to contribute to electricity generation. These resources derive from ocean tides, waves, and currents; temperature gradients in the ocean; and free-flowing rivers and streams. One measure of the interest in the possible use of these resources for electricity generation is the increasing number of permits that have been filed with the Federal Energy Regulatory Commission (FERC). As of December 2012, FERC had issued 4 licenses and 84 preliminary permits, up from virtually zero a decade ago. However, most of these permits are for developments along the Mississippi River, and the actual benefit realized from all MHK resources is extremely small. The first U.S. commercial gridconnected project, a tidal project in Maine with a capacity of less than 1 megawatt (MW), is currently delivering a fraction of that power to the grid and is due to be fully installed in 2013. As part of its assessment of MHK resources, DOE asked the National Research Council (NRC) to provide detailed evaluations. In response, the NRC formed the Committee on Marine Hydrokinetic Energy Technology Assessment. As directed in its statement of task (SOT), the committee first developed an interim report, released in June 2011, which focused on the wave and tidal resource assessments (Appendix B). The current report contains the committee's evaluation of all five of the DOE resource categories as well as the committee's comments on the overall MHK resource assessment process. This summary focuses on the committee's overarching findings and conclusions regarding a conceptual framework for developing the resource assessments, the aggregation of results into a single number, and the consistency across and coordination between the individual resource assessments. Critiques of the individual resource assessment, further discussion of the practical MHK resource base, and overarching conclusions and recommendations are explained in An Evaluation of the U.S. Department of Energy's Marine and Hydrokinetic Resource Assessment.
Renewable Energy from the Oceans
Title | Renewable Energy from the Oceans PDF eBook |
Author | Domenico P. Coiro |
Publisher | Institution of Engineering and Technology |
Pages | 480 |
Release | 2019-08-12 |
Genre | Technology & Engineering |
ISBN | 1785617664 |
There are many ways to harness the renewable and emissions-free energy available from the Earth's oceans. The technologies include wave energy, tidal and current energy, and energy from thermal and salinity gradients. In addition, offshore wind energy and marine (floating) solar arrays offer a possibility to exploit vast resources that are far larger than those available onshore. The potential capacities range from many hundreds of gigawatts to terawatts of generation. These technologies could contribute a significant part of the global electricity demand; they are particularly suitable for providing sustainable power to marine regions and island communities and nations.
Wave and Tidal Energy
Title | Wave and Tidal Energy PDF eBook |
Author | Deborah Greaves |
Publisher | John Wiley & Sons |
Pages | 717 |
Release | 2018-03-28 |
Genre | Science |
ISBN | 111901445X |
Eine umfassende Publikation zu sämtlichen Aspekten der Wellen- und Gezeitenenergie. Wave and Tidal Energy gibt einen ausführlichen Überblick über die Entwicklung erneuerbarer Energie aus dem Meer, bezieht sich auf die neueste Forschung und Erfahrungen aus Anlagentests. Das Buch verfolgt zwei Ziele, zum einen vermittelt es Einsteigern in das Fachgebiet eine Überblick über die Wellen- und Gezeitenenergie, zum anderen ist es ein Referenzwerk für komplexere Studien und die Praxis. Es vermittelt Detailwissen zu wichtigen Themen wie Ressourcencharakterisierung, Technologie für Wellen- und Gezeitenanlagen, Stromversorgungssysteme, numerische und physikalische Modellierung, Umwelteffekte und Politik. Zusätzlich enthält es eine aktuelle Übersicht über Entwicklungen in der ganzen Welt sowie Fallstudien zu ausgewählten Projekten. Hauptmerkmale: - Ausführliches Referenzwerk zu allen Aspekten der interdisziplinären Fachrichten Wellen- und Gezeitenenergie. - Greift auf die neuesten Forschungsergebnisse und die Erfahrung führender Experten in der numerischen und laborgestützten Modellierung zurück. - Gibt einen Überblick über regionale Entwicklungen in aller Welt, repräsentative Projekte werden in Fallstudien vorgestellt. Wave and Tidal Energy ist ein wertvolles Referenzwerk für eine breite Leserschaft, von Studenten der Ingenieurwissenschaften und technischen Managern über politische Entscheidungsträger bis hin zu Studienabsolventen und Forschern.
Marine Renewable Energies
Title | Marine Renewable Energies PDF eBook |
Author | Institut français de recherche pour l'exploitation de la mer |
Publisher | Editions Quae |
Pages | 322 |
Release | 2009 |
Genre | Marine resources |
ISBN | 275920183X |
An Evaluation of the U.S. Department of Energy's Marine and Hydrokinetic Resource Assessments
Title | An Evaluation of the U.S. Department of Energy's Marine and Hydrokinetic Resource Assessments PDF eBook |
Author | National Research Council |
Publisher | National Academies Press |
Pages | 169 |
Release | 2013-05-23 |
Genre | Science |
ISBN | 0309269997 |
Increasing renewable energy development, both within the United States and abroad, has rekindled interest in the potential for marine and hydrokinetic (MHK) resources to contribute to electricity generation. These resources derive from ocean tides, waves, and currents; temperature gradients in the ocean; and free-flowing rivers and streams. One measure of the interest in the possible use of these resources for electricity generation is the increasing number of permits that have been filed with the Federal Energy Regulatory Commission (FERC). As of December 2012, FERC had issued 4 licenses and 84 preliminary permits, up from virtually zero a decade ago. However, most of these permits are for developments along the Mississippi River, and the actual benefit realized from all MHK resources is extremely small. The first U.S. commercial gridconnected project, a tidal project in Maine with a capacity of less than 1 megawatt (MW), is currently delivering a fraction of that power to the grid and is due to be fully installed in 2013. As part of its assessment of MHK resources, DOE asked the National Research Council (NRC) to provide detailed evaluations. In response, the NRC formed the Committee on Marine Hydrokinetic Energy Technology Assessment. As directed in its statement of task (SOT), the committee first developed an interim report, released in June 2011, which focused on the wave and tidal resource assessments (Appendix B). The current report contains the committee's evaluation of all five of the DOE resource categories as well as the committee's comments on the overall MHK resource assessment process. This summary focuses on the committee's overarching findings and conclusions regarding a conceptual framework for developing the resource assessments, the aggregation of results into a single number, and the consistency across and coordination between the individual resource assessments. Critiques of the individual resource assessment, further discussion of the practical MHK resource base, and overarching conclusions and recommendations are explained in An Evaluation of the U.S. Department of Energy's Marine and Hydrokinetic Resource Assessment.
Energy Harvesting
Title | Energy Harvesting PDF eBook |
Author | Alireza Khaligh |
Publisher | CRC Press |
Pages | 529 |
Release | 2017-12-19 |
Genre | Science |
ISBN | 1351834029 |
Also called energy scavenging, energy harvesting captures, stores, and uses "clean" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, "green" resources and converting them into electrical energy. Recognizing this need, Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems describes various energy harvesting technologies, different topologies, and many types of power electronic interfaces for stand-alone utilization or grid connection of energy harvesting applications. Along with providing all the necessary concepts and theoretical background, the authors develop simulation models throughout the text to build a practical understanding of system analysis and modeling. With a focus on solar energy, the first chapter discusses the I−V characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, sun tracking systems, maximum power point tracking systems, shading effects, and power electronic interfaces for grid-connected and stand-alone PV systems. It also presents sizing criteria for applications and modern solar energy applications, including residential, vehicular, naval, and space applications. The next chapter reviews different types of wind turbines and electrical machines as well as various power electronic interfaces. After explaining the energy generation technologies, optimal operation principles, and possible utilization techniques of ocean tidal energy harvesting, the book explores near- and offshore approaches for harvesting the kinetic and potential energy of ocean waves. It also describes the required absorber, turbine, and generator types, along with the power electronic interfaces for grid connection and commercialized ocean wave energy conversion applications. The final chapter deals with closed, open, and hybrid-cycle ocean thermal energy conversion systems.