Manipulation of Multiphase Materials for Touch-less Nanobiotechnology
Title | Manipulation of Multiphase Materials for Touch-less Nanobiotechnology PDF eBook |
Author | Sara Coppola |
Publisher | Springer |
Pages | 121 |
Release | 2016-04-03 |
Genre | Technology & Engineering |
ISBN | 3319310593 |
The thesis presents an original and smart way to manipulate liquid and polymeric materials using a “pyro-fluidic platform” which exploits the pyro-electric effect activated onto a ferroelectric crystal. It describes a great variety of functionalities of the pyro-electrohydrodynamic platform, such as droplet self-assembling and dispensing, for manipulating multiphase liquids at the micro- and nanoscale. The thesis demonstrates the feasibility of non-contact self-assembling of liquids in plane (1D) using a micro engineered crystal, improving the dispensing capability and the smart transfer of material between two different planes (2D) and controlling and fabricating three-dimensional structures (3D). The thesis present the fabrication of highly integrated and automated ‘lab-on-a-chip’ systems based on microfluidics. The pyro-platform presented herein offers the great advantage of enabling the actuation of liquids in contact with a polar dielectric crystal through an electrode-less configuration. The simplicity and flexibility of the method for fabricating 3D polymer microstructures shows the great potential of the pyro-platform functionalities, exploitable in many fields, from optics to biosensing. In particular, this thesis reports the fabrication of optically active elements, such as nanodroplets, microlenses and microstructures, which have many potential applications in photonics. The capability for manipulating the samples of interest in a touch-less modality is very attractive for biological and chemical assays. Besides controlling cell growth and fate, smart micro-elements could deliver optical stimuli from and to cells monitoring their growth in real time, opening interesting perspectives for the realization of optically active scaffolds made of nanoengineered functional elements, thus paving the way to fascinating Optogenesis Studies.
Cellulose Nanoparticles
Title | Cellulose Nanoparticles PDF eBook |
Author | Vijay Kumar Thakur |
Publisher | |
Pages | 1154 |
Release | 2021-07-09 |
Genre | |
ISBN | 9781788017992 |
This two-volume set covers Cellulose Nanoparticles: Chemistry and Fundamentals and Cellulose Nanoparticles: Synthesis and Manufacturing. These books form a useful reference work for graduate students and researchers in chemistry, materials science, nanoscience and green nanotechnology.
Luminescent Materials
Title | Luminescent Materials PDF eBook |
Author | G. Blasse |
Publisher | Springer Science & Business Media |
Pages | 242 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 3642790178 |
Everyone starting work in this field is faced with the lack of basic books. Here, two renowned researchers introduce the reader to luminescence and its applications, describing the principles of the luminescence processes in a clear way and dealing not only with physics, but also with the chemistry of systems. Particular attention is paid to materials such as lamp phosphors, cathode-ray and X-ray phosphors, scintillators and many other applications.
Nano/Microscale Heat Transfer
Title | Nano/Microscale Heat Transfer PDF eBook |
Author | Zhuomin M. Zhang |
Publisher | Springer Nature |
Pages | 780 |
Release | 2020-06-23 |
Genre | Science |
ISBN | 3030450392 |
This substantially updated and augmented second edition adds over 200 pages of text covering and an array of newer developments in nanoscale thermal transport. In Nano/Microscale Heat Transfer, 2nd edition, Dr. Zhang expands his classroom-proven text to incorporate thermal conductivity spectroscopy, time-domain and frequency-domain thermoreflectance techniques, quantum size effect on specific heat, coherent phonon, minimum thermal conductivity, interface thermal conductance, thermal interface materials, 2D sheet materials and their unique thermal properties, soft materials, first-principles simulation, hyperbolic metamaterials, magnetic polaritons, and new near-field radiation experiments and numerical simulations. Informed by over 12 years use, the author’s research experience, and feedback from teaching faculty, the book has been reorganized in many sections and enriched with more examples and homework problems. Solutions for selected problems are also available to qualified faculty via a password-protected website.• Substantially updates and augments the widely adopted original edition, adding over 200 pages and many new illustrations;• Incorporates student and faculty feedback from a decade of classroom use;• Elucidates concepts explained with many examples and illustrations;• Supports student application of theory with 300 homework problems;• Maximizes reader understanding of micro/nanoscale thermophysical properties and processes and how to apply them to thermal science and engineering;• Features MATLAB codes for working with size and temperature effects on thermal conductivity, specific heat of nanostructures, thin-film optics, RCWA, and near-field radiation.
Luminescence
Title | Luminescence PDF eBook |
Author | Sergei Pyshkin |
Publisher | BoD – Books on Demand |
Pages | 144 |
Release | 2020-06-24 |
Genre | Technology & Engineering |
ISBN | 1789841313 |
Luminescence - OLED Technology and Applications is a collection of reviewed and relevant research chapters offering a comprehensive overview of recent developments in the field of organic light-emitting diode (OLED) materials and devices. The book comprises chapters authored by various researchers and is edited by an expert in the field. It provides a thorough overview of the latest technologies and applications in this field and opens new possible research paths for further novel developments.
Microscale Surface Tension and Its Applications
Title | Microscale Surface Tension and Its Applications PDF eBook |
Author | Pierre Lambert |
Publisher | MDPI |
Pages | 240 |
Release | 2019-10-21 |
Genre | Technology & Engineering |
ISBN | 3039215647 |
Building on advances in miniaturization and soft matter, surface tension effects are a major key to the development of soft/fluidic microrobotics. Benefiting from scaling laws, surface tension and capillary effects can enable sensing, actuation, adhesion, confinement, compliance, and other structural and functional properties necessary in micro- and nanosystems. Various applications are under development: microfluidic and lab-on-chip devices, soft gripping and manipulation of particles, colloidal and interfacial assemblies, fluidic/droplet mechatronics. The capillary action is ubiquitous in drops, bubbles and menisci, opening a broad spectrum of technological solutions and scientific investigations. Identified grand challenges to the establishment of fluidic microrobotics include mastering the dynamics of capillary effects, controlling the hysteresis arising from wetting and evaporation, improving the dispensing and handling of tiny droplets, and developing a mechatronic approach for the control and programming of surface tension effects. In this Special Issue of Micromachines, we invite contributions covering all aspects of microscale engineering relying on surface tension. Particularly, we welcome contributions on fundamentals or applications related to: Drop-botics: fluidic or surface tension-based micro/nanorobotics: capillary manipulation, gripping, and actuation, sensing, folding, propulsion and bio-inspired solutions; Control of surface tension effects: surface tension gradients, active surfactants, thermocapillarity, electrowetting, elastocapillarity; Handling of droplets, bubbles and liquid bridges: dispensing, confinement, displacement, stretching, rupture, evaporation; Capillary forces: modelling, measurement, simulation; Interfacial engineering: smart liquids, surface treatments; Interfacial fluidic and capillary assembly of colloids and devices; Biological applications of surface tension, including lab-on-chip and organ-on-chip systems.
Nano and Bio-Based Technologies for Wastewater Treatment
Title | Nano and Bio-Based Technologies for Wastewater Treatment PDF eBook |
Author | Elvis Fosso-Kankeu |
Publisher | John Wiley & Sons |
Pages | 382 |
Release | 2019-05-21 |
Genre | Science |
ISBN | 1119577055 |
Presents recent challenges related to new forms of pollution from industries and discusses adequate state-of-the-art technologies capable to remediate such forms of pollution. Over the past few decades the boom in the industrial sector has contributed to the release in the environment of pollutants that have no regulatory status and which may have significant impact on the health of humans and animals. These pollutants also referred to as "emerging pollutants", are mostly aromatic compounds which derive from excretion of pharmaceutical, industrial effluents and municipal discharge. It is recurrent these days to find water treatment plants which no longer produce water that fits the purpose of domestic consumption based on newly established guidelines. This situation has prompted water authorities and researchers to develop tools for proper prediction and control of the dispersion of pollutants in the environment to ensure that appropriate measures are taken to prevent the occurrence of outbreaks due to sudden load of these pollutants in the water system. The chapters in this book cover a wide range of nano and bio-based techniques that have been designed for the real time detection of emerging contaminants in environmental water sources, geochemical models that are continuously improved for the prediction of inorganic contaminants migration from the mine solid wastes into ground and surface waters. Remediation strategies are also discussed and include effective techniques based on nanotechnology, advanced membrane filtration, oxidative and bio-degradation processes using various types of nanocatalysts, biocatalysts or supporting polymer matrices which are under advanced investigations for their implementation at large scale for the removal of recalcitrant pollutants from polluted water. Nano and Bio-Based Technologies for Wastewater Treatment: Prediction and Control Tools for the Dispersion of Pollutants in the Environment is divided is two sections. The first section covers the occurrence of emerging pollutants in environmental water while the second section covers state-of-the-art research on the removal of emerging pollutants from water using sustainable technologies. A total of 13 chapters addressing various topics related to the two sections are essentially based on recent developments in the respective field which could have a significant impact on the enhancement of the performance of wastewater treatment plants around the world, and especially in developing countries where access to clean and safe water remains a daily challenge.