Lectures on the Poisson Process

Lectures on the Poisson Process
Title Lectures on the Poisson Process PDF eBook
Author Günter Last
Publisher Cambridge University Press
Pages 315
Release 2017-10-26
Genre Mathematics
ISBN 1107088011

Download Lectures on the Poisson Process Book in PDF, Epub and Kindle

A modern introduction to the Poisson process, with general point processes and random measures, and applications to stochastic geometry.

Stochastic Functional Differential Equations

Stochastic Functional Differential Equations
Title Stochastic Functional Differential Equations PDF eBook
Author S. E. A. Mohammed
Publisher Pitman Advanced Publishing Program
Pages 268
Release 1984
Genre Mathematics
ISBN

Download Stochastic Functional Differential Equations Book in PDF, Epub and Kindle

A Minicourse on Stochastic Partial Differential Equations

A Minicourse on Stochastic Partial Differential Equations
Title A Minicourse on Stochastic Partial Differential Equations PDF eBook
Author Robert C. Dalang
Publisher Springer Science & Business Media
Pages 230
Release 2009
Genre Mathematics
ISBN 3540859934

Download A Minicourse on Stochastic Partial Differential Equations Book in PDF, Epub and Kindle

This title contains lectures that offer an introduction to modern topics in stochastic partial differential equations and bring together experts whose research is centered on the interface between Gaussian analysis, stochastic analysis, and stochastic PDEs.

Stochastic Ferromagnetism

Stochastic Ferromagnetism
Title Stochastic Ferromagnetism PDF eBook
Author Lubomir Banas
Publisher Walter de Gruyter
Pages 248
Release 2013-12-18
Genre Mathematics
ISBN 3110307103

Download Stochastic Ferromagnetism Book in PDF, Epub and Kindle

This monograph examines magnetization dynamics at elevated temperatures which can be described by the stochastic Landau-Lifshitz-Gilbert equation (SLLG). The first part of the book studies the role of noise in finite ensembles of nanomagnetic particles: we show geometric ergodicity of a unique invariant measure of Gibbs type and study related properties of approximations of the SLLG, including time discretization and Ginzburg-Landau type penalization. In the second part we propose an implementable space-time discretization using random walks to construct a weak martingale solution of the corresponding stochastic partial differential equation which describes the magnetization process of infinite spin ensembles. The last part of the book is concerned with a macroscopic deterministic equation which describes temperature effects on macro-spins, i.e. expectations of the solutions to the SLLG. Furthermore, comparative computational studies with the stochastic model are included. We use constructive tools such as e.g. finite element methods to derive the theoretical results, which are then used for computational studies. The numerical experiments motivate an interesting interplay between inherent geometric and stochastic effects of the SLLG which still lack a rigorous analytical understanding: the role of space-time white noise, possible finite time blow-up behavior of solutions, long-time asymptotics, and effective dynamics.

Numerical Methods for Stochastic Partial Differential Equations with White Noise

Numerical Methods for Stochastic Partial Differential Equations with White Noise
Title Numerical Methods for Stochastic Partial Differential Equations with White Noise PDF eBook
Author Zhongqiang Zhang
Publisher Springer
Pages 391
Release 2017-09-01
Genre Mathematics
ISBN 3319575112

Download Numerical Methods for Stochastic Partial Differential Equations with White Noise Book in PDF, Epub and Kindle

This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical comparison with other integration methods in random space is made. Part III covers spatial white noise. Here the authors discuss numerical methods for nonlinear elliptic equations as well as other equations with additive noise. Numerical methods for SPDEs with multiplicative noise are also discussed using the Wiener chaos expansion method. In addition, some SPDEs driven by non-Gaussian white noise are discussed and some model reduction methods (based on Wick-Malliavin calculus) are presented for generalized polynomial chaos expansion methods. Powerful techniques are provided for solving stochastic partial differential equations. This book can be considered as self-contained. Necessary background knowledge is presented in the appendices. Basic knowledge of probability theory and stochastic calculus is presented in Appendix A. In Appendix B some semi-analytical methods for SPDEs are presented. In Appendix C an introduction to Gauss quadrature is provided. In Appendix D, all the conclusions which are needed for proofs are presented, and in Appendix E a method to compute the convergence rate empirically is included. In addition, the authors provide a thorough review of the topics, both theoretical and computational exercises in the book with practical discussion of the effectiveness of the methods. Supporting Matlab files are made available to help illustrate some of the concepts further. Bibliographic notes are included at the end of each chapter. This book serves as a reference for graduate students and researchers in the mathematical sciences who would like to understand state-of-the-art numerical methods for stochastic partial differential equations with white noise.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports
Title Scientific and Technical Aerospace Reports PDF eBook
Author
Publisher
Pages 1252
Release 1983
Genre Aeronautics
ISBN

Download Scientific and Technical Aerospace Reports Book in PDF, Epub and Kindle

Current Index to Statistics, Applications, Methods and Theory

Current Index to Statistics, Applications, Methods and Theory
Title Current Index to Statistics, Applications, Methods and Theory PDF eBook
Author
Publisher
Pages 812
Release 1997
Genre Mathematical statistics
ISBN

Download Current Index to Statistics, Applications, Methods and Theory Book in PDF, Epub and Kindle

The Current Index to Statistics (CIS) is a bibliographic index of publications in statistics, probability, and related fields.