Machine Learning with Quantum Computers

Machine Learning with Quantum Computers
Title Machine Learning with Quantum Computers PDF eBook
Author Maria Schuld
Publisher Springer Nature
Pages 321
Release 2021-10-17
Genre Science
ISBN 3030830985

Download Machine Learning with Quantum Computers Book in PDF, Epub and Kindle

This book offers an introduction into quantum machine learning research, covering approaches that range from "near-term" to fault-tolerant quantum machine learning algorithms, and from theoretical to practical techniques that help us understand how quantum computers can learn from data. Among the topics discussed are parameterized quantum circuits, hybrid optimization, data encoding, quantum feature maps and kernel methods, quantum learning theory, as well as quantum neural networks. The book aims at an audience of computer scientists and physicists at the graduate level onwards. The second edition extends the material beyond supervised learning and puts a special focus on the developments in near-term quantum machine learning seen over the past few years.

Supervised Learning with Quantum Computers

Supervised Learning with Quantum Computers
Title Supervised Learning with Quantum Computers PDF eBook
Author Maria Schuld
Publisher Springer
Pages 293
Release 2018-08-30
Genre Science
ISBN 3319964240

Download Supervised Learning with Quantum Computers Book in PDF, Epub and Kindle

Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ``quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.

Quantum Machine Learning

Quantum Machine Learning
Title Quantum Machine Learning PDF eBook
Author Peter Wittek
Publisher Academic Press
Pages 176
Release 2014-09-10
Genre Science
ISBN 0128010991

Download Quantum Machine Learning Book in PDF, Epub and Kindle

Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications. - Bridges the gap between abstract developments in quantum computing with the applied research on machine learning - Provides the theoretical minimum of machine learning, quantum mechanics, and quantum computing - Gives step-by-step guidance to a broader understanding of this emergent interdisciplinary body of research

Hands-On Quantum Machine Learning With Python

Hands-On Quantum Machine Learning With Python
Title Hands-On Quantum Machine Learning With Python PDF eBook
Author Frank Zickert
Publisher Independently Published
Pages 440
Release 2021-06-19
Genre
ISBN

Download Hands-On Quantum Machine Learning With Python Book in PDF, Epub and Kindle

You're interested in quantum computing and machine learning. But you don't know how to get started? Let me help! Whether you just get started with quantum computing and machine learning or you're already a senior machine learning engineer, Hands-On Quantum Machine Learning With Python is your comprehensive guide to get started with Quantum Machine Learning - the use of quantum computing for the computation of machine learning algorithms. Quantum computing promises to solve problems intractable with current computing technologies. But is it fundamentally different and asks us to change the way we think. Hands-On Quantum Machine Learning With Python strives to be the perfect balance between theory taught in a textbook and the actual hands-on knowledge you'll need to implement real-world solutions. Inside this book, you will learn the basics of quantum computing and machine learning in a practical and applied manner.

Quantum Machine Learning With Python

Quantum Machine Learning With Python
Title Quantum Machine Learning With Python PDF eBook
Author Santanu Pattanayak
Publisher Apress
Pages 295
Release 2021-03-29
Genre Computers
ISBN 9781484265215

Download Quantum Machine Learning With Python Book in PDF, Epub and Kindle

Quickly scale up to Quantum computing and Quantum machine learning foundations and related mathematics and expose them to different use cases that can be solved through Quantum based algorithms.This book explains Quantum Computing, which leverages the Quantum mechanical properties sub-atomic particles. It also examines Quantum machine learning, which can help solve some of the most challenging problems in forecasting, financial modeling, genomics, cybersecurity, supply chain logistics, cryptography among others. You'll start by reviewing the fundamental concepts of Quantum Computing, such as Dirac Notations, Qubits, and Bell state, followed by postulates and mathematical foundations of Quantum Computing. Once the foundation base is set, you'll delve deep into Quantum based algorithms including Quantum Fourier transform, phase estimation, and HHL (Harrow-Hassidim-Lloyd) among others. You'll then be introduced to Quantum machine learning and Quantum deep learning-based algorithms, along with advanced topics of Quantum adiabatic processes and Quantum based optimization. Throughout the book, there are Python implementations of different Quantum machine learning and Quantum computing algorithms using the Qiskit toolkit from IBM and Cirq from Google Research. What You'll Learn Understand Quantum computing and Quantum machine learning Explore varied domains and the scenarios where Quantum machine learning solutions can be applied Develop expertise in algorithm development in varied Quantum computing frameworks Review the major challenges of building large scale Quantum computers and applying its various techniques Who This Book Is For Machine Learning enthusiasts and engineers who want to quickly scale up to Quantum Machine Learning

Quantum Computing: An Applied Approach

Quantum Computing: An Applied Approach
Title Quantum Computing: An Applied Approach PDF eBook
Author Jack D. Hidary
Publisher Springer Nature
Pages 422
Release 2021-09-29
Genre Science
ISBN 3030832740

Download Quantum Computing: An Applied Approach Book in PDF, Epub and Kindle

This book integrates the foundations of quantum computing with a hands-on coding approach to this emerging field; it is the first to bring these elements together in an updated manner. This work is suitable for both academic coursework and corporate technical training. The second edition includes extensive updates and revisions, both to textual content and to the code. Sections have been added on quantum machine learning, quantum error correction, Dirac notation and more. This new edition benefits from the input of the many faculty, students, corporate engineering teams, and independent readers who have used the first edition. This volume comprises three books under one cover: Part I outlines the necessary foundations of quantum computing and quantum circuits. Part II walks through the canon of quantum computing algorithms and provides code on a range of quantum computing methods in current use. Part III covers the mathematical toolkit required to master quantum computing. Additional resources include a table of operators and circuit elements and a companion GitHub site providing code and updates. Jack D. Hidary is a research scientist in quantum computing and in AI at Alphabet X, formerly Google X.

Limitations and Future Applications of Quantum Cryptography

Limitations and Future Applications of Quantum Cryptography
Title Limitations and Future Applications of Quantum Cryptography PDF eBook
Author Kumar, Neeraj
Publisher IGI Global
Pages 305
Release 2020-12-18
Genre Computers
ISBN 1799866793

Download Limitations and Future Applications of Quantum Cryptography Book in PDF, Epub and Kindle

The concept of quantum computing is based on two fundamental principles of quantum mechanics: superposition and entanglement. Instead of using bits, qubits are used in quantum computing, which is a key indicator in the high level of safety and security this type of cryptography ensures. If interfered with or eavesdropped in, qubits will delete or refuse to send, which keeps the information safe. This is vital in the current era where sensitive and important personal information can be digitally shared online. In computer networks, a large amount of data is transferred worldwide daily, including anything from military plans to a country’s sensitive information, and data breaches can be disastrous. This is where quantum cryptography comes into play. By not being dependent on computational power, it can easily replace classical cryptography. Limitations and Future Applications of Quantum Cryptography is a critical reference that provides knowledge on the basics of IoT infrastructure using quantum cryptography, the differences between classical and quantum cryptography, and the future aspects and developments in this field. The chapters cover themes that span from the usage of quantum cryptography in healthcare, to forensics, and more. While highlighting topics such as 5G networks, image processing, algorithms, and quantum machine learning, this book is ideally intended for security professionals, IoT developers, computer scientists, practitioners, researchers, academicians, and students interested in the most recent research on quantum computing.