Machine Learning Mastery With R
Title | Machine Learning Mastery With R PDF eBook |
Author | Jason Brownlee |
Publisher | Machine Learning Mastery |
Pages | 219 |
Release | 2016-01-30 |
Genre | Computers |
ISBN |
R has been the gold standard in applied machine learning for a long time. Surveys show that it is the most popular platform used by professional data scientists. It is also preferred by the best data scientists in the world. In this Ebook, learn how to get started, practice and apply machine learning using the R platform.
Machine Learning with R
Title | Machine Learning with R PDF eBook |
Author | Brett Lantz |
Publisher | Packt Publishing Ltd |
Pages | 587 |
Release | 2013-10-25 |
Genre | Computers |
ISBN | 1782162151 |
Written as a tutorial to explore and understand the power of R for machine learning. This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.
Master Machine Learning Algorithms
Title | Master Machine Learning Algorithms PDF eBook |
Author | Jason Brownlee |
Publisher | Machine Learning Mastery |
Pages | 162 |
Release | 2016-03-04 |
Genre | Computers |
ISBN |
You must understand the algorithms to get good (and be recognized as being good) at machine learning. In this Ebook, finally cut through the math and learn exactly how machine learning algorithms work, then implement them from scratch, step-by-step.
Mathematics for Machine Learning
Title | Mathematics for Machine Learning PDF eBook |
Author | Marc Peter Deisenroth |
Publisher | Cambridge University Press |
Pages | 392 |
Release | 2020-04-23 |
Genre | Computers |
ISBN | 1108569323 |
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Machine Learning Mastery With Weka
Title | Machine Learning Mastery With Weka PDF eBook |
Author | Jason Brownlee |
Publisher | Machine Learning Mastery |
Pages | 247 |
Release | 2016-06-23 |
Genre | Computers |
ISBN |
Machine learning is not just for professors. Weka is a top machine learning platform that provides an easy-to-use graphical interface and state-of-the-art algorithms. In this Ebook, learn exactly how to get started with applied machine learning using the Weka platform.
Deep Learning for Time Series Forecasting
Title | Deep Learning for Time Series Forecasting PDF eBook |
Author | Jason Brownlee |
Publisher | Machine Learning Mastery |
Pages | 572 |
Release | 2018-08-30 |
Genre | Computers |
ISBN |
Deep learning methods offer a lot of promise for time series forecasting, such as the automatic learning of temporal dependence and the automatic handling of temporal structures like trends and seasonality. With clear explanations, standard Python libraries, and step-by-step tutorial lessons you’ll discover how to develop deep learning models for your own time series forecasting projects.
Deep Learning With Python
Title | Deep Learning With Python PDF eBook |
Author | Jason Brownlee |
Publisher | Machine Learning Mastery |
Pages | 266 |
Release | 2016-05-13 |
Genre | Computers |
ISBN |
Deep learning is the most interesting and powerful machine learning technique right now. Top deep learning libraries are available on the Python ecosystem like Theano and TensorFlow. Tap into their power in a few lines of code using Keras, the best-of-breed applied deep learning library. In this Ebook, learn exactly how to get started and apply deep learning to your own machine learning projects.