Machine Learning Mastery With Python

Machine Learning Mastery With Python
Title Machine Learning Mastery With Python PDF eBook
Author Jason Brownlee
Publisher Machine Learning Mastery
Pages 177
Release 2016-04-08
Genre Computers
ISBN

Download Machine Learning Mastery With Python Book in PDF, Epub and Kindle

The Python ecosystem with scikit-learn and pandas is required for operational machine learning. Python is the rising platform for professional machine learning because you can use the same code to explore different models in R&D then deploy it directly to production. In this Ebook, learn exactly how to get started and apply machine learning using the Python ecosystem.

Deep Learning With Python

Deep Learning With Python
Title Deep Learning With Python PDF eBook
Author Jason Brownlee
Publisher Machine Learning Mastery
Pages 266
Release 2016-05-13
Genre Computers
ISBN

Download Deep Learning With Python Book in PDF, Epub and Kindle

Deep learning is the most interesting and powerful machine learning technique right now. Top deep learning libraries are available on the Python ecosystem like Theano and TensorFlow. Tap into their power in a few lines of code using Keras, the best-of-breed applied deep learning library. In this Ebook, learn exactly how to get started and apply deep learning to your own machine learning projects.

Imbalanced Classification with Python

Imbalanced Classification with Python
Title Imbalanced Classification with Python PDF eBook
Author Jason Brownlee
Publisher Machine Learning Mastery
Pages 463
Release 2020-01-14
Genre Computers
ISBN

Download Imbalanced Classification with Python Book in PDF, Epub and Kindle

Imbalanced classification are those classification tasks where the distribution of examples across the classes is not equal. Cut through the equations, Greek letters, and confusion, and discover the specialized techniques data preparation techniques, learning algorithms, and performance metrics that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover how to confidently develop robust models for your own imbalanced classification projects.

Better Deep Learning

Better Deep Learning
Title Better Deep Learning PDF eBook
Author Jason Brownlee
Publisher Machine Learning Mastery
Pages 575
Release 2018-12-13
Genre Computers
ISBN

Download Better Deep Learning Book in PDF, Epub and Kindle

Deep learning neural networks have become easy to define and fit, but are still hard to configure. Discover exactly how to improve the performance of deep learning neural network models on your predictive modeling projects. With clear explanations, standard Python libraries, and step-by-step tutorial lessons, you’ll discover how to better train your models, reduce overfitting, and make more accurate predictions.

Programming Machine Learning

Programming Machine Learning
Title Programming Machine Learning PDF eBook
Author Paolo Perrotta
Publisher Pragmatic Bookshelf
Pages 437
Release 2020-03-31
Genre Computers
ISBN 1680507710

Download Programming Machine Learning Book in PDF, Epub and Kindle

You've decided to tackle machine learning - because you're job hunting, embarking on a new project, or just think self-driving cars are cool. But where to start? It's easy to be intimidated, even as a software developer. The good news is that it doesn't have to be that hard. Master machine learning by writing code one line at a time, from simple learning programs all the way to a true deep learning system. Tackle the hard topics by breaking them down so they're easier to understand, and build your confidence by getting your hands dirty. Peel away the obscurities of machine learning, starting from scratch and going all the way to deep learning. Machine learning can be intimidating, with its reliance on math and algorithms that most programmers don't encounter in their regular work. Take a hands-on approach, writing the Python code yourself, without any libraries to obscure what's really going on. Iterate on your design, and add layers of complexity as you go. Build an image recognition application from scratch with supervised learning. Predict the future with linear regression. Dive into gradient descent, a fundamental algorithm that drives most of machine learning. Create perceptrons to classify data. Build neural networks to tackle more complex and sophisticated data sets. Train and refine those networks with backpropagation and batching. Layer the neural networks, eliminate overfitting, and add convolution to transform your neural network into a true deep learning system. Start from the beginning and code your way to machine learning mastery. What You Need: The examples in this book are written in Python, but don't worry if you don't know this language: you'll pick up all the Python you need very quickly. Apart from that, you'll only need your computer, and your code-adept brain.

Introduction to Time Series Forecasting With Python

Introduction to Time Series Forecasting With Python
Title Introduction to Time Series Forecasting With Python PDF eBook
Author Jason Brownlee
Publisher Machine Learning Mastery
Pages 359
Release 2017-02-16
Genre Mathematics
ISBN

Download Introduction to Time Series Forecasting With Python Book in PDF, Epub and Kindle

Time series forecasting is different from other machine learning problems. The key difference is the fixed sequence of observations and the constraints and additional structure this provides. In this Ebook, finally cut through the math and specialized methods for time series forecasting. Using clear explanations, standard Python libraries and step-by-step tutorials you will discover how to load and prepare data, evaluate model skill, and implement forecasting models for time series data.

Statistical Methods for Machine Learning

Statistical Methods for Machine Learning
Title Statistical Methods for Machine Learning PDF eBook
Author Jason Brownlee
Publisher Machine Learning Mastery
Pages 291
Release 2018-05-30
Genre Computers
ISBN

Download Statistical Methods for Machine Learning Book in PDF, Epub and Kindle

Statistics is a pillar of machine learning. You cannot develop a deep understanding and application of machine learning without it. Cut through the equations, Greek letters, and confusion, and discover the topics in statistics that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover the importance of statistical methods to machine learning, summary stats, hypothesis testing, nonparametric stats, resampling methods, and much more.