Machine Learning
Title | Machine Learning PDF eBook |
Author | Jason Bell |
Publisher | John Wiley & Sons |
Pages | 497 |
Release | 2020-02-17 |
Genre | Mathematics |
ISBN | 1119642191 |
Dig deep into the data with a hands-on guide to machine learning with updated examples and more! Machine Learning: Hands-On for Developers and Technical Professionals provides hands-on instruction and fully-coded working examples for the most common machine learning techniques used by developers and technical professionals. The book contains a breakdown of each ML variant, explaining how it works and how it is used within certain industries, allowing readers to incorporate the presented techniques into their own work as they follow along. A core tenant of machine learning is a strong focus on data preparation, and a full exploration of the various types of learning algorithms illustrates how the proper tools can help any developer extract information and insights from existing data. The book includes a full complement of Instructor's Materials to facilitate use in the classroom, making this resource useful for students and as a professional reference. At its core, machine learning is a mathematical, algorithm-based technology that forms the basis of historical data mining and modern big data science. Scientific analysis of big data requires a working knowledge of machine learning, which forms predictions based on known properties learned from training data. Machine Learning is an accessible, comprehensive guide for the non-mathematician, providing clear guidance that allows readers to: Learn the languages of machine learning including Hadoop, Mahout, and Weka Understand decision trees, Bayesian networks, and artificial neural networks Implement Association Rule, Real Time, and Batch learning Develop a strategic plan for safe, effective, and efficient machine learning By learning to construct a system that can learn from data, readers can increase their utility across industries. Machine learning sits at the core of deep dive data analysis and visualization, which is increasingly in demand as companies discover the goldmine hiding in their existing data. For the tech professional involved in data science, Machine Learning: Hands-On for Developers and Technical Professionals provides the skills and techniques required to dig deeper.
Oracle Business Intelligence with Machine Learning
Title | Oracle Business Intelligence with Machine Learning PDF eBook |
Author | Rosendo Abellera |
Publisher | |
Pages | |
Release | 2018 |
Genre | Machine learning |
ISBN | 9781484245538 |
Use machine learning and Oracle Business Intelligence Enterprise Edition (OBIEE) as a comprehensive BI solution. This book follows a when-to, why-to, and how-to approach to explain the key steps involved in utilizing the artificial intelligence components now available for a successful OBIEE implementation. Oracle Business Intelligence with Machine Learning covers various technologies including using Oracle OBIEE, R Enterprise, Spatial Maps, and machine learning for advanced visualization and analytics. The machine learning material focuses on learning representations of input data suitable for a given prediction problem. This book focuses on the practical aspects of implementing machine learning solutions using the rich Oracle BI ecosystem. The primary objective of this book is to bridge the gap between the academic state-of-the-art and the industry state-of-the-practice by introducing you to machine learning with OBIEE. You will: See machine learning in OBIEE Master the fundamentals of machine learning and how it pertains to BI and advanced analytics Gain an introduction to Oracle R Enterprise Discover the practical considerations of implementing machine learning with OBIEE.
Predictive Analytics Using Oracle Data Miner
Title | Predictive Analytics Using Oracle Data Miner PDF eBook |
Author | Brendan Tierney |
Publisher | McGraw Hill Professional |
Pages | 466 |
Release | 2014-08-08 |
Genre | Computers |
ISBN | 0071821759 |
Build Next-Generation In-Database Predictive Analytics Applications with Oracle Data Miner “If you have an Oracle Database and want to leverage that data to discover new insights, make predictions, and generate actionable insights, this book is a must read for you! In Predictive Analytics Using Oracle Data Miner: Develop & Use Oracle Data Mining Models in Oracle Data Miner, SQL & PL/SQL, Brendan Tierney, Oracle ACE Director and data mining expert, guides you through the basic concepts of data mining and offers step-by-step instructions for solving data-driven problems using SQL Developer’s Oracle Data Mining extension. Brendan takes it full circle by showing you how to deploy advanced analytical methodologies and predictive models immediately into enterprise-wide production environments using the in-database SQL and PL/SQL functionality. Definitely a must read for any Oracle data professional!” --Charlie Berger, Senior Director Product Management, Oracle Data Mining and Advanced Analytics Perform in-database data mining to unlock hidden insights in data. Written by an Oracle ACE Director, Predictive Analytics Using Oracle Data Miner shows you how to use this powerful tool to create and deploy advanced data mining models. Covering topics for the data scientist, Oracle developer, and Oracle database administrator, this Oracle Press guide shows you how to get started with Oracle Data Miner and build Oracle Data Miner models using SQL and PL/SQL packages. You'll get best practices for integrating your Oracle Data Miner models into applications to automate the discovery and distribution of business intelligence predictions throughout the enterprise. Install and configure Oracle Data Miner for Oracle Database 11g Release 11.2 and Oracle Database 12c Create Oracle Data Miner projects and workflows Prepare data for data mining Develop data mining models using association rule analysis, classification, clustering, regression, and anomaly detection Use data dictionary views and prepare your data using in-database transformations Build and use data mining models using SQL and PL/SQL packages Migrate your Oracle Data Miner models, integrate them into dashboards and applications, and run them in parallel Build transient data mining models with the Predictive Queries feature in Oracle Database 12c
Applied Mathematics for Database Professionals
Title | Applied Mathematics for Database Professionals PDF eBook |
Author | Lex deHaan |
Publisher | Apress |
Pages | 389 |
Release | 2007-10-24 |
Genre | Computers |
ISBN | 143020348X |
This book touches on an area seldom explored: the mathematical underpinnings of the relational database. The topic is important, but far too often ignored. This is the first book to explain the underlying math in a way that’s accessible to database professionals. Just as importantly, if not more so, this book goes beyond the abstract by showing readers how to apply that math in ways that will make them more productive in their jobs. What’s in this book will "open the eyes" of most readers to the great power, elegance, and simplicity inherent in relational database technology.
Encyclopedia of Data Science and Machine Learning
Title | Encyclopedia of Data Science and Machine Learning PDF eBook |
Author | Wang, John |
Publisher | IGI Global |
Pages | 3296 |
Release | 2023-01-20 |
Genre | Computers |
ISBN | 1799892212 |
Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.
Demystifying Big Data and Machine Learning for Healthcare
Title | Demystifying Big Data and Machine Learning for Healthcare PDF eBook |
Author | Prashant Natarajan |
Publisher | CRC Press |
Pages | 227 |
Release | 2017-02-15 |
Genre | Medical |
ISBN | 1315389304 |
Healthcare transformation requires us to continually look at new and better ways to manage insights – both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization’s day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V’s that matter in healthcare and why Harmonize the 4 C’s across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.
Oracle R Enterprise: Harnessing the Power of R in Oracle Database
Title | Oracle R Enterprise: Harnessing the Power of R in Oracle Database PDF eBook |
Author | Brendan Tierney |
Publisher | McGraw Hill Professional |
Pages | 273 |
Release | 2016-11-04 |
Genre | Computers |
ISBN | 1259585646 |
Master the Big Data Capabilities of Oracle R Enterprise Effectively manage your enterprise’s big data and keep complex processes running smoothly using the hands-on information contained in this Oracle Press guide. Oracle R Enterprise: Harnessing the Power of R in Oracle Database shows, step-by-step, how to create and execute large-scale predictive analytics and maintain superior performance. Discover how to explore and prepare your data, accurately model business processes, generate sophisticated graphics, and write and deploy powerful scripts. You will also find out how to effectively incorporate Oracle R Enterprise features in APEX applications, OBIEE dashboards, and Apache Hadoop systems. Learn to: • Install, configure, and administer Oracle R Enterprise • Establish connections and move data to the database • Create Oracle R Enterprise packages and functions • Use the R language to work with data in Oracle Database • Build models using ODM, ORE, and other algorithms • Develop and deploy R scripts and use the R script repository • Execute embedded R scripts and employ ORE SQL API functions • Map and manipulate data using Oracle R Advanced Analytics for Hadoop • Use ORE in Oracle Data Miner, OBIEE, and other applications