Machine Learning for Medical Image Reconstruction
Title | Machine Learning for Medical Image Reconstruction PDF eBook |
Author | Farah Deeba |
Publisher | Springer Nature |
Pages | 170 |
Release | 2020-10-21 |
Genre | Computers |
ISBN | 3030615987 |
This book constitutes the refereed proceedings of the Third International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshop was held virtually. The 15 papers presented were carefully reviewed and selected from 18 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging and deep learning for general image reconstruction.
Machine Learning for Medical Image Reconstruction
Title | Machine Learning for Medical Image Reconstruction PDF eBook |
Author | Nandinee Haq |
Publisher | Springer |
Pages | 142 |
Release | 2021-10-31 |
Genre | Computers |
ISBN | 9783030885519 |
This book constitutes the refereed proceedings of the 4th International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2021, held in conjunction with MICCAI 2021, in October 2021. The workshop was planned to take place in Strasbourg, France, but was held virtually due to the COVID-19 pandemic. The 13 papers presented were carefully reviewed and selected from 20 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging and deep learning for general image reconstruction.
Deep Learning in Medical Image Analysis
Title | Deep Learning in Medical Image Analysis PDF eBook |
Author | Zhengchao Dong |
Publisher | |
Pages | 458 |
Release | 2021 |
Genre | |
ISBN | 9783036514703 |
The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis.
Machine Learning for Tomographic Imaging
Title | Machine Learning for Tomographic Imaging PDF eBook |
Author | Ge Wang |
Publisher | Programme: Iop Expanding Physi |
Pages | 250 |
Release | 2019-12-30 |
Genre | Technology & Engineering |
ISBN | 9780750322140 |
Machine learning represents a paradigm shift in tomographic imaging, and image reconstruction is a new frontier of machine learning. This book will meet the needs of those who want to catch the wave of smart imaging. The book targets graduate students and researchers in the imaging community. Open network software, working datasets, and multimedia will be included. The first of its kind in the emerging field of deep reconstruction and deep imaging, Machine Learning for Tomographic Imaging presents the most essential elements, latest progresses and an in-depth perspective on this important topic.
Deep Learning for Medical Image Analysis
Title | Deep Learning for Medical Image Analysis PDF eBook |
Author | S. Kevin Zhou |
Publisher | Academic Press |
Pages | 544 |
Release | 2023-11-23 |
Genre | Computers |
ISBN | 0323858880 |
Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache
Medical Image Recognition, Segmentation and Parsing
Title | Medical Image Recognition, Segmentation and Parsing PDF eBook |
Author | S. Kevin Zhou |
Publisher | Academic Press |
Pages | 548 |
Release | 2015-12-11 |
Genre | Computers |
ISBN | 0128026766 |
This book describes the technical problems and solutions for automatically recognizing and parsing a medical image into multiple objects, structures, or anatomies. It gives all the key methods, including state-of- the-art approaches based on machine learning, for recognizing or detecting, parsing or segmenting, a cohort of anatomical structures from a medical image. Written by top experts in Medical Imaging, this book is ideal for university researchers and industry practitioners in medical imaging who want a complete reference on key methods, algorithms and applications in medical image recognition, segmentation and parsing of multiple objects. Learn: - Research challenges and problems in medical image recognition, segmentation and parsing of multiple objects - Methods and theories for medical image recognition, segmentation and parsing of multiple objects - Efficient and effective machine learning solutions based on big datasets - Selected applications of medical image parsing using proven algorithms - Provides a comprehensive overview of state-of-the-art research on medical image recognition, segmentation, and parsing of multiple objects - Presents efficient and effective approaches based on machine learning paradigms to leverage the anatomical context in the medical images, best exemplified by large datasets - Includes algorithms for recognizing and parsing of known anatomies for practical applications
Machine Learning in Medical Imaging
Title | Machine Learning in Medical Imaging PDF eBook |
Author | Chunfeng Lian |
Publisher | Springer Nature |
Pages | 723 |
Release | 2021-09-25 |
Genre | Computers |
ISBN | 303087589X |
This book constitutes the proceedings of the 12th International Workshop on Machine Learning in Medical Imaging, MLMI 2021, held in conjunction with MICCAI 2021, in Strasbourg, France, in September 2021.* The 71 papers presented in this volume were carefully reviewed and selected from 92 submissions. They focus on major trends and challenges in the above-mentioned area, aiming to identify new-cutting-edge techniques and their uses in medical imaging. Topics dealt with are: deep learning, generative adversarial learning, ensemble learning, sparse learning, multi-task learning, multi-view learning, manifold learning, and reinforcement learning, with their applications to medical image analysis, computer-aided detection and diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc. *The workshop was held virtually.