Machine Learning for Decision Makers

Machine Learning for Decision Makers
Title Machine Learning for Decision Makers PDF eBook
Author Patanjali Kashyap
Publisher Apress
Pages 381
Release 2018-01-04
Genre Computers
ISBN 1484229886

Download Machine Learning for Decision Makers Book in PDF, Epub and Kindle

Take a deep dive into the concepts of machine learning as they apply to contemporary business and management. You will learn how machine learning techniques are used to solve fundamental and complex problems in society and industry. Machine Learning for Decision Makers serves as an excellent resource for establishing the relationship of machine learning with IoT, big data, and cognitive and cloud computing to give you an overview of how these modern areas of computing relate to each other. This book introduces a collection of the most important concepts of machine learning and sets them in context with other vital technologies that decision makers need to know about. These concepts span the process from envisioning the problem to applying machine-learning techniques to your particular situation. This discussion also provides an insight to help deploy the results to improve decision-making. The book uses case studies and jargon busting to help you grasp the theory of machine learning quickly. You'll soon gain the big picture of machine learning and how it fits with other cutting-edge IT services. This knowledge will give you confidence in your decisions for the future of your business. What You Will Learn Discover the machine learning, big data, and cloud and cognitive computing technology stack Gain insights into machine learning concepts and practices Understand business and enterprise decision-making using machine learning Absorb machine-learning best practices Who This Book Is For Managers tasked with making key decisions who want to learn how and when machine learning and related technologies can help them.

Reinforcement and Systemic Machine Learning for Decision Making

Reinforcement and Systemic Machine Learning for Decision Making
Title Reinforcement and Systemic Machine Learning for Decision Making PDF eBook
Author Parag Kulkarni
Publisher John Wiley & Sons
Pages 324
Release 2012-07-11
Genre Technology & Engineering
ISBN 1118271556

Download Reinforcement and Systemic Machine Learning for Decision Making Book in PDF, Epub and Kindle

Reinforcement and Systemic Machine Learning for Decision Making There are always difficulties in making machines that learn from experience. Complete information is not always available—or it becomes available in bits and pieces over a period of time. With respect to systemic learning, there is a need to understand the impact of decisions and actions on a system over that period of time. This book takes a holistic approach to addressing that need and presents a new paradigm—creating new learning applications and, ultimately, more intelligent machines. The first book of its kind in this new and growing field, Reinforcement and Systemic Machine Learning for Decision Making focuses on the specialized research area of machine learning and systemic machine learning. It addresses reinforcement learning and its applications, incremental machine learning, repetitive failure-correction mechanisms, and multiperspective decision making. Chapters include: Introduction to Reinforcement and Systemic Machine Learning Fundamentals of Whole-System, Systemic, and Multiperspective Machine Learning Systemic Machine Learning and Model Inference and Information Integration Adaptive Learning Incremental Learning and Knowledge Representation Knowledge Augmentation: A Machine Learning Perspective Building a Learning System With the potential of this paradigm to become one of the more utilized in its field, professionals in the area of machine and systemic learning will find this book to be a valuable resource.

Handbook Of Machine Learning - Volume 2: Optimization And Decision Making

Handbook Of Machine Learning - Volume 2: Optimization And Decision Making
Title Handbook Of Machine Learning - Volume 2: Optimization And Decision Making PDF eBook
Author Tshilidzi Marwala
Publisher World Scientific
Pages 321
Release 2019-11-21
Genre Computers
ISBN 981120568X

Download Handbook Of Machine Learning - Volume 2: Optimization And Decision Making Book in PDF, Epub and Kindle

Building on , this volume on Optimization and Decision Making covers a range of algorithms and their applications. Like the first volume, it provides a starting point for machine learning enthusiasts as a comprehensive guide on classical optimization methods. It also provides an in-depth overview on how artificial intelligence can be used to define, disprove or validate economic modeling and decision making concepts.

Interpretable Machine Learning

Interpretable Machine Learning
Title Interpretable Machine Learning PDF eBook
Author Christoph Molnar
Publisher Lulu.com
Pages 320
Release 2020
Genre Computers
ISBN 0244768528

Download Interpretable Machine Learning Book in PDF, Epub and Kindle

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Applied Intelligent Decision Making in Machine Learning

Applied Intelligent Decision Making in Machine Learning
Title Applied Intelligent Decision Making in Machine Learning PDF eBook
Author Himansu Das
Publisher CRC Press
Pages 263
Release 2020-11-18
Genre Computers
ISBN 1000208540

Download Applied Intelligent Decision Making in Machine Learning Book in PDF, Epub and Kindle

The objective of this edited book is to share the outcomes from various research domains to develop efficient, adaptive, and intelligent models to handle the challenges related to decision making. It incorporates the advances in machine intelligent techniques such as data streaming, classification, clustering, pattern matching, feature selection, and deep learning in the decision-making process for several diversified applications such as agriculture, character recognition, landslide susceptibility, recommendation systems, forecasting air quality, healthcare, exchange rate prediction, and image dehazing. It also provides a premier interdisciplinary platform for scientists, researchers, practitioners, and educators to share their thoughts in the context of recent innovations, trends, developments, practical challenges, and advancements in the field of data mining, machine learning, soft computing, and decision science. It also focuses on the usefulness of applied intelligent techniques in the decision-making process in several aspects. To address these objectives, this edited book includes a dozen chapters contributed by authors from around the globe. The authors attempt to solve these complex problems using several intelligent machine-learning techniques. This allows researchers to understand the mechanism needed to harness the decision-making process using machine-learning techniques for their own respective endeavors.

Deep Learning Applications and Intelligent Decision Making in Engineering

Deep Learning Applications and Intelligent Decision Making in Engineering
Title Deep Learning Applications and Intelligent Decision Making in Engineering PDF eBook
Author Senthilnathan, Karthikrajan
Publisher IGI Global
Pages 332
Release 2020-10-23
Genre Technology & Engineering
ISBN 1799821102

Download Deep Learning Applications and Intelligent Decision Making in Engineering Book in PDF, Epub and Kindle

Deep learning includes a subset of machine learning for processing the unsupervised data with artificial neural network functions. The major advantage of deep learning is to process big data analytics for better analysis and self-adaptive algorithms to handle more data. When applied to engineering, deep learning can have a great impact on the decision-making process. Deep Learning Applications and Intelligent Decision Making in Engineering is a pivotal reference source that provides practical applications of deep learning to improve decision-making methods and construct smart environments. Highlighting topics such as smart transportation, e-commerce, and cyber physical systems, this book is ideally designed for engineers, computer scientists, programmers, software engineers, research scholars, IT professionals, academicians, and postgraduate students seeking current research on the implementation of automation and deep learning in various engineering disciplines.

Business Intelligence

Business Intelligence
Title Business Intelligence PDF eBook
Author Carlo Vercellis
Publisher John Wiley & Sons
Pages 314
Release 2011-08-10
Genre Mathematics
ISBN 1119965470

Download Business Intelligence Book in PDF, Epub and Kindle

Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made. Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence. This book: Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence. Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation. Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies. Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions. This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.