Machine Learning for Cyber Agents
Title | Machine Learning for Cyber Agents PDF eBook |
Author | Stanislav Abaimov |
Publisher | Springer Nature |
Pages | 235 |
Release | 2022-01-27 |
Genre | Computers |
ISBN | 3030915859 |
The cyber world has been both enhanced and endangered by AI. On the one hand, the performance of many existing security services has been improved, and new tools created. On the other, it entails new cyber threats both through evolved attacking capacities and through its own imperfections and vulnerabilities. Moreover, quantum computers are further pushing the boundaries of what is possible, by making machine learning cyber agents faster and smarter. With the abundance of often-confusing information and lack of trust in the diverse applications of AI-based technologies, it is essential to have a book that can explain, from a cyber security standpoint, why and at what stage the emerging, powerful technology of machine learning can and should be mistrusted, and how to benefit from it while avoiding potentially disastrous consequences. In addition, this book sheds light on another highly sensitive area – the application of machine learning for offensive purposes, an aspect that is widely misunderstood, under-represented in the academic literature and requires immediate expert attention.
Game Theory and Machine Learning for Cyber Security
Title | Game Theory and Machine Learning for Cyber Security PDF eBook |
Author | Charles A. Kamhoua |
Publisher | John Wiley & Sons |
Pages | 546 |
Release | 2021-09-08 |
Genre | Technology & Engineering |
ISBN | 1119723949 |
GAME THEORY AND MACHINE LEARNING FOR CYBER SECURITY Move beyond the foundations of machine learning and game theory in cyber security to the latest research in this cutting-edge field In Game Theory and Machine Learning for Cyber Security, a team of expert security researchers delivers a collection of central research contributions from both machine learning and game theory applicable to cybersecurity. The distinguished editors have included resources that address open research questions in game theory and machine learning applied to cyber security systems and examine the strengths and limitations of current game theoretic models for cyber security. Readers will explore the vulnerabilities of traditional machine learning algorithms and how they can be mitigated in an adversarial machine learning approach. The book offers a comprehensive suite of solutions to a broad range of technical issues in applying game theory and machine learning to solve cyber security challenges. Beginning with an introduction to foundational concepts in game theory, machine learning, cyber security, and cyber deception, the editors provide readers with resources that discuss the latest in hypergames, behavioral game theory, adversarial machine learning, generative adversarial networks, and multi-agent reinforcement learning. Readers will also enjoy: A thorough introduction to game theory for cyber deception, including scalable algorithms for identifying stealthy attackers in a game theoretic framework, honeypot allocation over attack graphs, and behavioral games for cyber deception An exploration of game theory for cyber security, including actionable game-theoretic adversarial intervention detection against advanced persistent threats Practical discussions of adversarial machine learning for cyber security, including adversarial machine learning in 5G security and machine learning-driven fault injection in cyber-physical systems In-depth examinations of generative models for cyber security Perfect for researchers, students, and experts in the fields of computer science and engineering, Game Theory and Machine Learning for Cyber Security is also an indispensable resource for industry professionals, military personnel, researchers, faculty, and students with an interest in cyber security.
Reinforcement Learning for Cyber-Physical Systems
Title | Reinforcement Learning for Cyber-Physical Systems PDF eBook |
Author | Chong Li |
Publisher | CRC Press |
Pages | 249 |
Release | 2019-02-22 |
Genre | Computers |
ISBN | 1351006606 |
Reinforcement Learning for Cyber-Physical Systems: with Cybersecurity Case Studies was inspired by recent developments in the fields of reinforcement learning (RL) and cyber-physical systems (CPSs). Rooted in behavioral psychology, RL is one of the primary strands of machine learning. Different from other machine learning algorithms, such as supervised learning and unsupervised learning, the key feature of RL is its unique learning paradigm, i.e., trial-and-error. Combined with the deep neural networks, deep RL become so powerful that many complicated systems can be automatically managed by AI agents at a superhuman level. On the other hand, CPSs are envisioned to revolutionize our society in the near future. Such examples include the emerging smart buildings, intelligent transportation, and electric grids. However, the conventional hand-programming controller in CPSs could neither handle the increasing complexity of the system, nor automatically adapt itself to new situations that it has never encountered before. The problem of how to apply the existing deep RL algorithms, or develop new RL algorithms to enable the real-time adaptive CPSs, remains open. This book aims to establish a linkage between the two domains by systematically introducing RL foundations and algorithms, each supported by one or a few state-of-the-art CPS examples to help readers understand the intuition and usefulness of RL techniques. Features Introduces reinforcement learning, including advanced topics in RL Applies reinforcement learning to cyber-physical systems and cybersecurity Contains state-of-the-art examples and exercises in each chapter Provides two cybersecurity case studies Reinforcement Learning for Cyber-Physical Systems with Cybersecurity Case Studies is an ideal text for graduate students or junior/senior undergraduates in the fields of science, engineering, computer science, or applied mathematics. It would also prove useful to researchers and engineers interested in cybersecurity, RL, and CPS. The only background knowledge required to appreciate the book is a basic knowledge of calculus and probability theory.
Cyber Security and Digital Forensics
Title | Cyber Security and Digital Forensics PDF eBook |
Author | Sabyasachi Pramanik |
Publisher | John Wiley & Sons |
Pages | 300 |
Release | 2022-01-12 |
Genre | Computers |
ISBN | 1119795648 |
CYBER SECURITY AND DIGITAL FORENSICS Cyber security is an incredibly important issue that is constantly changing, with new methods, processes, and technologies coming online all the time. Books like this are invaluable to professionals working in this area, to stay abreast of all of these changes. Current cyber threats are getting more complicated and advanced with the rapid evolution of adversarial techniques. Networked computing and portable electronic devices have broadened the role of digital forensics beyond traditional investigations into computer crime. The overall increase in the use of computers as a way of storing and retrieving high-security information requires appropriate security measures to protect the entire computing and communication scenario worldwide. Further, with the introduction of the internet and its underlying technology, facets of information security are becoming a primary concern to protect networks and cyber infrastructures from various threats. This groundbreaking new volume, written and edited by a wide range of professionals in this area, covers broad technical and socio-economic perspectives for the utilization of information and communication technologies and the development of practical solutions in cyber security and digital forensics. Not just for the professional working in the field, but also for the student or academic on the university level, this is a must-have for any library. Audience: Practitioners, consultants, engineers, academics, and other professionals working in the areas of cyber analysis, cyber security, homeland security, national defense, the protection of national critical infrastructures, cyber-crime, cyber vulnerabilities, cyber-attacks related to network systems, cyber threat reduction planning, and those who provide leadership in cyber security management both in public and private sectors
Machine Learning for Cyber Security
Title | Machine Learning for Cyber Security PDF eBook |
Author | Xiaofeng Chen |
Publisher | |
Pages | 398 |
Release | 2019 |
Genre | Computer security |
ISBN | 9783030306205 |
This book constitutes the proceedings of the Second International Conference on Machine Learning for Cyber Security, ML4CS 2019, held in Xian, China in September 2019. The 23 revised full papers and 3 short papers presented were carefully reviewed and selected from 70 submissions. The papers detail all aspects of machine learning in network infrastructure security, in network security detections and in application software security.
AI and Big Data’s Potential for Disruptive Innovation
Title | AI and Big Data’s Potential for Disruptive Innovation PDF eBook |
Author | Strydom, Moses |
Publisher | IGI Global |
Pages | 427 |
Release | 2019-09-27 |
Genre | Computers |
ISBN | 1522596895 |
Big data and artificial intelligence (AI) are at the forefront of technological advances that represent a potential transformational mega-trend—a new multipolar and innovative disruption. These technologies, and their associated management paradigm, are already rapidly impacting many industries and occupations, but in some sectors, the change is just beginning. Innovating ahead of emerging technologies is the new imperative for any organization that aspires to succeed in the next decade. Faced with the power of this AI movement, it is imperative to understand the dynamics and new codes required by the disruption and to adapt accordingly. AI and Big Data’s Potential for Disruptive Innovation provides emerging research exploring the theoretical and practical aspects of successfully implementing new and innovative technologies in a variety of sectors including business, transportation, and healthcare. Featuring coverage on a broad range of topics such as semantic mapping, ethics in AI, and big data governance, this book is ideally designed for IT specialists, industry professionals, managers, executives, researchers, scientists, and engineers seeking current research on the production of new and innovative mechanization and its disruptions.
Machine Learning and Security
Title | Machine Learning and Security PDF eBook |
Author | Clarence Chio |
Publisher | "O'Reilly Media, Inc." |
Pages | 394 |
Release | 2018-01-26 |
Genre | Computers |
ISBN | 1491979852 |
Can machine learning techniques solve our computer security problems and finally put an end to the cat-and-mouse game between attackers and defenders? Or is this hope merely hype? Now you can dive into the science and answer this question for yourself. With this practical guide, you’ll explore ways to apply machine learning to security issues such as intrusion detection, malware classification, and network analysis. Machine learning and security specialists Clarence Chio and David Freeman provide a framework for discussing the marriage of these two fields, as well as a toolkit of machine-learning algorithms that you can apply to an array of security problems. This book is ideal for security engineers and data scientists alike. Learn how machine learning has contributed to the success of modern spam filters Quickly detect anomalies, including breaches, fraud, and impending system failure Conduct malware analysis by extracting useful information from computer binaries Uncover attackers within the network by finding patterns inside datasets Examine how attackers exploit consumer-facing websites and app functionality Translate your machine learning algorithms from the lab to production Understand the threat attackers pose to machine learning solutions