Advanced Machine Learning Approaches in Cancer Prognosis

Advanced Machine Learning Approaches in Cancer Prognosis
Title Advanced Machine Learning Approaches in Cancer Prognosis PDF eBook
Author Janmenjoy Nayak
Publisher Springer Nature
Pages 461
Release 2021-05-29
Genre Technology & Engineering
ISBN 3030719758

Download Advanced Machine Learning Approaches in Cancer Prognosis Book in PDF, Epub and Kindle

This book introduces a variety of advanced machine learning approaches covering the areas of neural networks, fuzzy logic, and hybrid intelligent systems for the determination and diagnosis of cancer. Moreover, the tactical solutions of machine learning have proved its vast range of significance and, provided novel solutions in the medical field for the diagnosis of disease. This book also explores the distinct deep learning approaches that are capable of yielding more accurate outcomes for the diagnosis of cancer. In addition to providing an overview of the emerging machine and deep learning approaches, it also enlightens an insight on how to evaluate the efficiency and appropriateness of such techniques and analysis of cancer data used in the cancer diagnosis. Therefore, this book focuses on the recent advancements in the machine learning and deep learning approaches used in the diagnosis of different types of cancer along with their research challenges and future directions for the targeted audience including scientists, experts, Ph.D. students, postdocs, and anyone interested in the subjects discussed.

Multimodal Scene Understanding

Multimodal Scene Understanding
Title Multimodal Scene Understanding PDF eBook
Author Michael Ying Yang
Publisher Academic Press
Pages 424
Release 2019-07-16
Genre Technology & Engineering
ISBN 0128173599

Download Multimodal Scene Understanding Book in PDF, Epub and Kindle

Multimodal Scene Understanding: Algorithms, Applications and Deep Learning presents recent advances in multi-modal computing, with a focus on computer vision and photogrammetry. It provides the latest algorithms and applications that involve combining multiple sources of information and describes the role and approaches of multi-sensory data and multi-modal deep learning. The book is ideal for researchers from the fields of computer vision, remote sensing, robotics, and photogrammetry, thus helping foster interdisciplinary interaction and collaboration between these realms. Researchers collecting and analyzing multi-sensory data collections – for example, KITTI benchmark (stereo+laser) - from different platforms, such as autonomous vehicles, surveillance cameras, UAVs, planes and satellites will find this book to be very useful. - Contains state-of-the-art developments on multi-modal computing - Shines a focus on algorithms and applications - Presents novel deep learning topics on multi-sensor fusion and multi-modal deep learning

Deep Learning for Cancer Diagnosis

Deep Learning for Cancer Diagnosis
Title Deep Learning for Cancer Diagnosis PDF eBook
Author Utku Kose
Publisher Springer Nature
Pages 311
Release 2020-09-12
Genre Technology & Engineering
ISBN 9811563217

Download Deep Learning for Cancer Diagnosis Book in PDF, Epub and Kindle

This book explores various applications of deep learning to the diagnosis of cancer,while also outlining the future face of deep learning-assisted cancer diagnostics. As is commonly known, artificial intelligence has paved the way for countless new solutions in the field of medicine. In this context, deep learning is a recent and remarkable sub-field, which can effectively cope with huge amounts of data and deliver more accurate results. As a vital research area, medical diagnosis is among those in which deep learning-oriented solutions are often employed. Accordingly, the objective of this book is to highlight recent advanced applications of deep learning for diagnosing different types of cancer. The target audience includes scientists, experts, MSc and PhD students, postdocs, and anyone interested in the subjects discussed. The book can be used as a reference work to support courses on artificial intelligence, medical and biomedicaleducation.

Machine Learning in Radiation Oncology

Machine Learning in Radiation Oncology
Title Machine Learning in Radiation Oncology PDF eBook
Author Issam El Naqa
Publisher Springer
Pages 336
Release 2015-06-19
Genre Medical
ISBN 3319183052

Download Machine Learning in Radiation Oncology Book in PDF, Epub and Kindle

​This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided radiotherapy; respiratory motion management; and treatment response modeling and outcome prediction. The book will be invaluable for students and residents in medical physics and radiation oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.

Data Analytics in Bioinformatics

Data Analytics in Bioinformatics
Title Data Analytics in Bioinformatics PDF eBook
Author Rabinarayan Satpathy
Publisher John Wiley & Sons
Pages 433
Release 2021-01-20
Genre Computers
ISBN 111978560X

Download Data Analytics in Bioinformatics Book in PDF, Epub and Kindle

Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.

Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning

Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning
Title Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning PDF eBook
Author Rani, Geeta
Publisher IGI Global
Pages 586
Release 2020-10-16
Genre Medical
ISBN 1799827437

Download Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning Book in PDF, Epub and Kindle

By applying data analytics techniques and machine learning algorithms to predict disease, medical practitioners can more accurately diagnose and treat patients. However, researchers face problems in identifying suitable algorithms for pre-processing, transformations, and the integration of clinical data in a single module, as well as seeking different ways to build and evaluate models. The Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning is a pivotal reference source that explores the application of algorithms to making disease predictions through the identification of symptoms and information retrieval from images such as MRIs, ECGs, EEGs, etc. Highlighting a wide range of topics including clinical decision support systems, biomedical image analysis, and prediction models, this book is ideally designed for clinicians, physicians, programmers, computer engineers, IT specialists, data analysts, hospital administrators, researchers, academicians, and graduate and post-graduate students.

Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems

Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems
Title Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems PDF eBook
Author E. Priya
Publisher Springer Nature
Pages 290
Release 2020-09-21
Genre Medical
ISBN 9811561419

Download Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems Book in PDF, Epub and Kindle

This book comprehensively reviews the various automated and semi-automated signal and image processing techniques, as well as deep-learning-based image analysis techniques, used in healthcare diagnostics. It highlights a range of data pre-processing methods used in signal processing for effective data mining in remote healthcare, and discusses pre-processing using filter techniques, noise removal, and contrast-enhanced methods for improving image quality. The book discusses the status quo of artificial intelligence in medical applications, as well as its future. Further, it offers a glimpse of feature extraction methods for reducing dimensionality and extracting discriminatory information hidden in biomedical signals. Given its scope, the book is intended for academics, researchers and practitioners interested in the latest real-world technological innovations.