Machine Learning and Knowledge Discovery in Databases, Part III

Machine Learning and Knowledge Discovery in Databases, Part III
Title Machine Learning and Knowledge Discovery in Databases, Part III PDF eBook
Author Dimitrios Gunopulos
Publisher Springer
Pages 683
Release 2011-09-06
Genre Computers
ISBN 3642238084

Download Machine Learning and Knowledge Discovery in Databases, Part III Book in PDF, Epub and Kindle

This three-volume set LNAI 6911, LNAI 6912, and LNAI 6913 constitutes the refereed proceedings of the European conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2011, held in Athens, Greece, in September 2011. The 121 revised full papers presented together with 10 invited talks and 11 demos in the three volumes, were carefully reviewed and selected from about 600 paper submissions. The papers address all areas related to machine learning and knowledge discovery in databases as well as other innovative application domains such as supervised and unsupervised learning with some innovative contributions in fundamental issues; dimensionality reduction, distance and similarity learning, model learning and matrix/tensor analysis; graph mining, graphical models, hidden markov models, kernel methods, active and ensemble learning, semi-supervised and transductive learning, mining sparse representations, model learning, inductive logic programming, and statistical learning. a significant part of the papers covers novel and timely applications of data mining and machine learning in industrial domains.

Machine Learning and Knowledge Discovery in Databases

Machine Learning and Knowledge Discovery in Databases
Title Machine Learning and Knowledge Discovery in Databases PDF eBook
Author Michelangelo Ceci
Publisher Springer
Pages 881
Release 2017-12-29
Genre Computers
ISBN 3319712462

Download Machine Learning and Knowledge Discovery in Databases Book in PDF, Epub and Kindle

The three volume proceedings LNAI 10534 – 10536 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2017, held in Skopje, Macedonia, in September 2017. The total of 101 regular papers presented in part I and part II was carefully reviewed and selected from 364 submissions; there are 47 papers in the applied data science, nectar and demo track. The contributions were organized in topical sections named as follows: Part I: anomaly detection; computer vision; ensembles and meta learning; feature selection and extraction; kernel methods; learning and optimization, matrix and tensor factorization; networks and graphs; neural networks and deep learning. Part II: pattern and sequence mining; privacy and security; probabilistic models and methods; recommendation; regression; reinforcement learning; subgroup discovery; time series and streams; transfer and multi-task learning; unsupervised and semisupervised learning. Part III: applied data science track; nectar track; and demo track.

Machine Learning and Knowledge Discovery in Databases, Part II

Machine Learning and Knowledge Discovery in Databases, Part II
Title Machine Learning and Knowledge Discovery in Databases, Part II PDF eBook
Author Dimitrios Gunopulos
Publisher Springer
Pages 702
Release 2011-09-06
Genre Computers
ISBN 3642237835

Download Machine Learning and Knowledge Discovery in Databases, Part II Book in PDF, Epub and Kindle

This three-volume set LNAI 6911, LNAI 6912, and LNAI 6913 constitutes the refereed proceedings of the European conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2011, held in Athens, Greece, in September 2011. The 121 revised full papers presented together with 10 invited talks and 11 demos in the three volumes, were carefully reviewed and selected from about 600 paper submissions. The papers address all areas related to machine learning and knowledge discovery in databases as well as other innovative application domains such as supervised and unsupervised learning with some innovative contributions in fundamental issues; dimensionality reduction, distance and similarity learning, model learning and matrix/tensor analysis; graph mining, graphical models, hidden markov models, kernel methods, active and ensemble learning, semi-supervised and transductive learning, mining sparse representations, model learning, inductive logic programming, and statistical learning. a significant part of the papers covers novel and timely applications of data mining and machine learning in industrial domains.

Data Analysis, Machine Learning and Knowledge Discovery

Data Analysis, Machine Learning and Knowledge Discovery
Title Data Analysis, Machine Learning and Knowledge Discovery PDF eBook
Author Myra Spiliopoulou
Publisher Springer Science & Business Media
Pages 461
Release 2013-11-26
Genre Computers
ISBN 3319015958

Download Data Analysis, Machine Learning and Knowledge Discovery Book in PDF, Epub and Kindle

Data analysis, machine learning and knowledge discovery are research areas at the intersection of computer science, artificial intelligence, mathematics and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as web and text mining, marketing, medicine, bioinformatics and business intelligence. This volume contains the revised versions of selected papers in the field of data analysis, machine learning and knowledge discovery presented during the 36th annual conference of the German Classification Society (GfKl). The conference was held at the University of Hildesheim (Germany) in August 2012. ​

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining
Title Knowledge Discovery and Data Mining PDF eBook
Author O. Maimon
Publisher Springer Science & Business Media
Pages 192
Release 2000-12-31
Genre Computers
ISBN 9780792366478

Download Knowledge Discovery and Data Mining Book in PDF, Epub and Kindle

This book presents a specific and unified approach to Knowledge Discovery and Data Mining, termed IFN for Information Fuzzy Network methodology. Data Mining (DM) is the science of modelling and generalizing common patterns from large sets of multi-type data. DM is a part of KDD, which is the overall process for Knowledge Discovery in Databases. The accessibility and abundance of information today makes this a topic of particular importance and need. The book has three main parts complemented by appendices as well as software and project data that are accessible from the book's web site (http://www.eng.tau.ac.iV-maimonlifn-kdg£). Part I (Chapters 1-4) starts with the topic of KDD and DM in general and makes reference to other works in the field, especially those related to the information theoretic approach. The remainder of the book presents our work, starting with the IFN theory and algorithms. Part II (Chapters 5-6) discusses the methodology of application and includes case studies. Then in Part III (Chapters 7-9) a comparative study is presented, concluding with some advanced methods and open problems. The IFN, being a generic methodology, applies to a variety of fields, such as manufacturing, finance, health care, medicine, insurance, and human resources. The appendices expand on the relevant theoretical background and present descriptions of sample projects (including detailed results).

Machine Learning and Knowledge Discovery for Engineering Systems Health Management

Machine Learning and Knowledge Discovery for Engineering Systems Health Management
Title Machine Learning and Knowledge Discovery for Engineering Systems Health Management PDF eBook
Author Ashok N. Srivastava
Publisher CRC Press
Pages 489
Release 2016-04-19
Genre Computers
ISBN 1439841799

Download Machine Learning and Knowledge Discovery for Engineering Systems Health Management Book in PDF, Epub and Kindle

This volume presents state-of-the-art tools and techniques for automatically detecting, diagnosing, and predicting the effects of adverse events in an engineered system. It emphasizes the importance of these techniques in managing the intricate interactions within and between engineering systems to maintain a high degree of reliability. Reflecting the interdisciplinary nature of the field, the book explains how the fundamental algorithms and methods of both physics-based and data-driven approaches effectively address systems health management in application areas such as data centers, aircraft, and software systems.

Knowledge Discovery with Support Vector Machines

Knowledge Discovery with Support Vector Machines
Title Knowledge Discovery with Support Vector Machines PDF eBook
Author Lutz H. Hamel
Publisher John Wiley & Sons
Pages 211
Release 2011-09-20
Genre Computers
ISBN 1118211030

Download Knowledge Discovery with Support Vector Machines Book in PDF, Epub and Kindle

An easy-to-follow introduction to support vector machines This book provides an in-depth, easy-to-follow introduction to support vector machines drawing only from minimal, carefully motivated technical and mathematical background material. It begins with a cohesive discussion of machine learning and goes on to cover: Knowledge discovery environments Describing data mathematically Linear decision surfaces and functions Perceptron learning Maximum margin classifiers Support vector machines Elements of statistical learning theory Multi-class classification Regression with support vector machines Novelty detection Complemented with hands-on exercises, algorithm descriptions, and data sets, Knowledge Discovery with Support Vector Machines is an invaluable textbook for advanced undergraduate and graduate courses. It is also an excellent tutorial on support vector machines for professionals who are pursuing research in machine learning and related areas.