Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track
Title | Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track PDF eBook |
Author | Gianmarco De Francisci Morales |
Publisher | Springer Nature |
Pages | 745 |
Release | |
Genre | |
ISBN | 3031434277 |
Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track
Title | Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track PDF eBook |
Author | Yuxiao Dong |
Publisher | Springer Nature |
Pages | 608 |
Release | 2021-02-24 |
Genre | Computers |
ISBN | 3030676706 |
The 5-volume proceedings, LNAI 12457 until 12461 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020, which was held during September 14-18, 2020. The conference was planned to take place in Ghent, Belgium, but had to change to an online format due to the COVID-19 pandemic. The 232 full papers and 10 demo papers presented in this volume were carefully reviewed and selected for inclusion in the proceedings. The volumes are organized in topical sections as follows: Part I: Pattern Mining; clustering; privacy and fairness; (social) network analysis and computational social science; dimensionality reduction and autoencoders; domain adaptation; sketching, sampling, and binary projections; graphical models and causality; (spatio-) temporal data and recurrent neural networks; collaborative filtering and matrix completion. Part II: deep learning optimization and theory; active learning; adversarial learning; federated learning; Kernel methods and online learning; partial label learning; reinforcement learning; transfer and multi-task learning; Bayesian optimization and few-shot learning. Part III: Combinatorial optimization; large-scale optimization and differential privacy; boosting and ensemble methods; Bayesian methods; architecture of neural networks; graph neural networks; Gaussian processes; computer vision and image processing; natural language processing; bioinformatics. Part IV: applied data science: recommendation; applied data science: anomaly detection; applied data science: Web mining; applied data science: transportation; applied data science: activity recognition; applied data science: hardware and manufacturing; applied data science: spatiotemporal data. Part V: applied data science: social good; applied data science: healthcare; applied data science: e-commerce and finance; applied data science: computational social science; applied data science: sports; demo track.
Machine Learning and Knowledge Discovery in Databases. Research Track and Demo Track
Title | Machine Learning and Knowledge Discovery in Databases. Research Track and Demo Track PDF eBook |
Author | Albert Bifet |
Publisher | Springer Nature |
Pages | 487 |
Release | |
Genre | |
ISBN | 3031703715 |
Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track
Title | Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track PDF eBook |
Author | Albert Bifet |
Publisher | Springer Nature |
Pages | 517 |
Release | |
Genre | |
ISBN | 3031703812 |
Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track
Title | Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track PDF eBook |
Author | Yuxiao Dong |
Publisher | Springer Nature |
Pages | 612 |
Release | 2021-02-24 |
Genre | Computers |
ISBN | 3030676676 |
The 5-volume proceedings, LNAI 12457 until 12461 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020, which was held during September 14-18, 2020. The conference was planned to take place in Ghent, Belgium, but had to change to an online format due to the COVID-19 pandemic. The 232 full papers and 10 demo papers presented in this volume were carefully reviewed and selected for inclusion in the proceedings. The volumes are organized in topical sections as follows: Part I: Pattern Mining; clustering; privacy and fairness; (social) network analysis and computational social science; dimensionality reduction and autoencoders; domain adaptation; sketching, sampling, and binary projections; graphical models and causality; (spatio-) temporal data and recurrent neural networks; collaborative filtering and matrix completion. Part II: deep learning optimization and theory; active learning; adversarial learning; federated learning; Kernel methods and online learning; partial label learning; reinforcement learning; transfer and multi-task learning; Bayesian optimization and few-shot learning. Part III: Combinatorial optimization; large-scale optimization and differential privacy; boosting and ensemble methods; Bayesian methods; architecture of neural networks; graph neural networks; Gaussian processes; computer vision and image processing; natural language processing; bioinformatics. Part IV: applied data science: recommendation; applied data science: anomaly detection; applied data science: Web mining; applied data science: transportation; applied data science: activity recognition; applied data science: hardware and manufacturing; applied data science: spatiotemporal data. Part V: applied data science: social good; applied data science: healthcare; applied data science: e-commerce and finance; applied data science: computational social science; applied data science: sports; demo track.
Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track
Title | Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track PDF eBook |
Author | Gianmarco De Francisci Morales |
Publisher | Springer Nature |
Pages | 429 |
Release | 2023-09-16 |
Genre | Computers |
ISBN | 3031434307 |
The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023. The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track. The volumes are organized in topical sections as follows: Part I: Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering. Part II: Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning. Part III: Graph Neural Networks; Graphs; Interpretability; Knowledge Graphs; Large-scale Learning. Part IV: Natural Language Processing; Neuro/Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning; Representation Learning. Part V: Robustness; Time Series; Transfer and Multitask Learning. Part VI: Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Interaction; Recommendation and Information Retrieval. Part VII: Sustainability, Climate, and Environment.- Transportation & Urban Planning.- Demo.
Machine Learning and Knowledge Discovery in Databases. Research Track
Title | Machine Learning and Knowledge Discovery in Databases. Research Track PDF eBook |
Author | Albert Bifet |
Publisher | Springer Nature |
Pages | 509 |
Release | |
Genre | |
ISBN | 3031703650 |