Machine Learning and Deep Learning in Neuroimaging Data Analysis

Machine Learning and Deep Learning in Neuroimaging Data Analysis
Title Machine Learning and Deep Learning in Neuroimaging Data Analysis PDF eBook
Author Anitha S. Pillai
Publisher CRC Press
Pages 133
Release 2024-02-15
Genre Computers
ISBN 1003815545

Download Machine Learning and Deep Learning in Neuroimaging Data Analysis Book in PDF, Epub and Kindle

Machine learning (ML) and deep learning (DL) have become essential tools in healthcare. They are capable of processing enormous amounts of data to find patterns and are also adopted into methods that manage and make sense of healthcare data, either electronic healthcare records or medical imagery. This book explores how ML/DL can assist neurologists in identifying, classifying or predicting neurological problems that require neuroimaging. With the ability to model high-dimensional datasets, supervised learning algorithms can help in relating brain images to behavioral or clinical observations and unsupervised learning can uncover hidden structures/patterns in images. Bringing together artificial intelligence (AI) experts as well as medical practitioners, these chapters cover the majority of neuro problems that use neuroimaging for diagnosis, along with case studies and directions for future research.

Machine Learning in Clinical Neuroimaging

Machine Learning in Clinical Neuroimaging
Title Machine Learning in Clinical Neuroimaging PDF eBook
Author Ahmed Abdulkadir
Publisher Springer Nature
Pages 185
Release 2021-09-22
Genre Computers
ISBN 3030875865

Download Machine Learning in Clinical Neuroimaging Book in PDF, Epub and Kindle

This book constitutes the refereed proceedings of the 4th International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2021, held on September 27, 2021, in conjunction with MICCAI 2021. The workshop was held virtually due to the COVID-19 pandemic. The 17 papers presented in this book were carefully reviewed and selected from 27 submissions. They were organized in topical sections named: computational anatomy and brain networks and time series.

Understanding and Interpreting Machine Learning in Medical Image Computing Applications

Understanding and Interpreting Machine Learning in Medical Image Computing Applications
Title Understanding and Interpreting Machine Learning in Medical Image Computing Applications PDF eBook
Author Danail Stoyanov
Publisher Springer
Pages 158
Release 2018-10-23
Genre Computers
ISBN 3030026280

Download Understanding and Interpreting Machine Learning in Medical Image Computing Applications Book in PDF, Epub and Kindle

This book constitutes the refereed joint proceedings of the First International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2018, the First International Workshop on Deep Learning Fails, DLF 2018, and the First International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2018, held in conjunction with the 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018, in Granada, Spain, in September 2018. The 4 full MLCN papers, the 6 full DLF papers, and the 6 full iMIMIC papers included in this volume were carefully reviewed and selected. The MLCN contributions develop state-of-the-art machine learning methods such as spatio-temporal Gaussian process analysis, stochastic variational inference, and deep learning for applications in Alzheimer's disease diagnosis and multi-site neuroimaging data analysis; the DLF papers evaluate the strengths and weaknesses of DL and identify the main challenges in the current state of the art and future directions; the iMIMIC papers cover a large range of topics in the field of interpretability of machine learning in the context of medical image analysis.

Machine Learning and Deep Learning in Neuroimaging Data Analysis

Machine Learning and Deep Learning in Neuroimaging Data Analysis
Title Machine Learning and Deep Learning in Neuroimaging Data Analysis PDF eBook
Author Anitha S. Pillai
Publisher
Pages 0
Release 2024
Genre Computers
ISBN 9781032190686

Download Machine Learning and Deep Learning in Neuroimaging Data Analysis Book in PDF, Epub and Kindle

"Machine Learning (ML) and Deep Learning (DL) have become essential tools in healthcare. They are capable of processing enormous amounts of data to find patterns and are also adopted into methods that manage and make sense of healthcare data, either electronic healthcare records or medical imagery. This book explores how ML/DL can assist neurologists in identifying, classifying or predicting neurological problems that require neuroimaging. With the ability to model high dimensional datasets, supervised learning algorithms can help in relating brain images to behavioral or clinical observations and unsupervised learning can uncover hidden structures/patterns in images. Bringing together both AI experts as well as medical practitioners, chapters cover the majority of neuro problems that use neuroimaging for diagnosis, along with case studies and directions for future research"--

Machine Learning and Medical Imaging

Machine Learning and Medical Imaging
Title Machine Learning and Medical Imaging PDF eBook
Author Guorong Wu
Publisher Academic Press
Pages 514
Release 2016-08-11
Genre Computers
ISBN 0128041145

Download Machine Learning and Medical Imaging Book in PDF, Epub and Kindle

Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, and clinicians. - Demonstrates the application of cutting-edge machine learning techniques to medical imaging problems - Covers an array of medical imaging applications including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics - Features self-contained chapters with a thorough literature review - Assesses the development of future machine learning techniques and the further application of existing techniques

Psychiatric Neuroimaging

Psychiatric Neuroimaging
Title Psychiatric Neuroimaging PDF eBook
Author Virginia Ng
Publisher IOS Press
Pages 268
Release 2003
Genre
ISBN 9781586033446

Download Psychiatric Neuroimaging Book in PDF, Epub and Kindle

Deep Learning for Medical Image Analysis

Deep Learning for Medical Image Analysis
Title Deep Learning for Medical Image Analysis PDF eBook
Author S. Kevin Zhou
Publisher Academic Press
Pages 544
Release 2023-11-23
Genre Computers
ISBN 0323858880

Download Deep Learning for Medical Image Analysis Book in PDF, Epub and Kindle

Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache