Stochastic Stability of Differential Equations
Title | Stochastic Stability of Differential Equations PDF eBook |
Author | Rafail Khasminskii |
Publisher | Springer Science & Business Media |
Pages | 353 |
Release | 2011-09-20 |
Genre | Mathematics |
ISBN | 3642232809 |
Since the publication of the first edition of the present volume in 1980, the stochastic stability of differential equations has become a very popular subject of research in mathematics and engineering. To date exact formulas for the Lyapunov exponent, the criteria for the moment and almost sure stability, and for the existence of stationary and periodic solutions of stochastic differential equations have been widely used in the literature. In this updated volume readers will find important new results on the moment Lyapunov exponent, stability index and some other fields, obtained after publication of the first edition, and a significantly expanded bibliography. This volume provides a solid foundation for students in graduate courses in mathematics and its applications. It is also useful for those researchers who would like to learn more about this subject, to start their research in this area or to study the properties of concrete mechanical systems subjected to random perturbations.
Lyapunov Stability for Partial Differential Equations. Part 1 - Lyapunov Stability Theory and the Stability of Solutions to Partial Differential Equations. Part 2 - Contraction Groups and Equivalent Norms
Title | Lyapunov Stability for Partial Differential Equations. Part 1 - Lyapunov Stability Theory and the Stability of Solutions to Partial Differential Equations. Part 2 - Contraction Groups and Equivalent Norms PDF eBook |
Author | |
Publisher | |
Pages | 140 |
Release | 1968 |
Genre | |
ISBN |
Boundary Control of PDEs
Title | Boundary Control of PDEs PDF eBook |
Author | Miroslav Krstic |
Publisher | SIAM |
Pages | 197 |
Release | 2008-01-01 |
Genre | Mathematics |
ISBN | 0898718600 |
The text's broad coverage includes parabolic PDEs; hyperbolic PDEs of first and second order; fluid, thermal, and structural systems; delay systems; PDEs with third and fourth derivatives in space (including variants of linearized Ginzburg-Landau, Schrodinger, Kuramoto-Sivashinsky, KdV, beam, and Navier-Stokes equations); real-valued as well as complex-valued PDEs; stabilization as well as motion planning and trajectory tracking for PDEs; and elements of adaptive control for PDEs and control of nonlinear PDEs.
Scientific and Technical Aerospace Reports
Title | Scientific and Technical Aerospace Reports PDF eBook |
Author | |
Publisher | |
Pages | 1280 |
Release | 1980 |
Genre | Aeronautics |
ISBN |
Stability of Nonautonomous Differential Equations
Title | Stability of Nonautonomous Differential Equations PDF eBook |
Author | Luis Barreira |
Publisher | Springer |
Pages | 288 |
Release | 2007-09-26 |
Genre | Mathematics |
ISBN | 3540747753 |
This volume covers the stability of nonautonomous differential equations in Banach spaces in the presence of nonuniform hyperbolicity. Topics under discussion include the Lyapunov stability of solutions, the existence and smoothness of invariant manifolds, and the construction and regularity of topological conjugacies. The exposition is directed to researchers as well as graduate students interested in differential equations and dynamical systems, particularly in stability theory.
Spectral and Dynamical Stability of Nonlinear Waves
Title | Spectral and Dynamical Stability of Nonlinear Waves PDF eBook |
Author | Todd Kapitula |
Publisher | Springer Science & Business Media |
Pages | 369 |
Release | 2013-06-06 |
Genre | Mathematics |
ISBN | 1461469953 |
This book unifies the dynamical systems and functional analysis approaches to the linear and nonlinear stability of waves. It synthesizes fundamental ideas of the past 20+ years of research, carefully balancing theory and application. The book isolates and methodically develops key ideas by working through illustrative examples that are subsequently synthesized into general principles. Many of the seminal examples of stability theory, including orbital stability of the KdV solitary wave, and asymptotic stability of viscous shocks for scalar conservation laws, are treated in a textbook fashion for the first time. It presents spectral theory from a dynamical systems and functional analytic point of view, including essential and absolute spectra, and develops general nonlinear stability results for dissipative and Hamiltonian systems. The structure of the linear eigenvalue problem for Hamiltonian systems is carefully developed, including the Krein signature and related stability indices. The Evans function for the detection of point spectra is carefully developed through a series of frameworks of increasing complexity. Applications of the Evans function to the Orientation index, edge bifurcations, and large domain limits are developed through illustrative examples. The book is intended for first or second year graduate students in mathematics, or those with equivalent mathematical maturity. It is highly illustrated and there are many exercises scattered throughout the text that highlight and emphasize the key concepts. Upon completion of the book, the reader will be in an excellent position to understand and contribute to current research in nonlinear stability.
Control of Higher–Dimensional PDEs
Title | Control of Higher–Dimensional PDEs PDF eBook |
Author | Thomas Meurer |
Publisher | Springer Science & Business Media |
Pages | 373 |
Release | 2012-08-13 |
Genre | Technology & Engineering |
ISBN | 3642300154 |
This monograph presents new model-based design methods for trajectory planning, feedback stabilization, state estimation, and tracking control of distributed-parameter systems governed by partial differential equations (PDEs). Flatness and backstepping techniques and their generalization to PDEs with higher-dimensional spatial domain lie at the core of this treatise. This includes the development of systematic late lumping design procedures and the deduction of semi-numerical approaches using suitable approximation methods. Theoretical developments are combined with both simulation examples and experimental results to bridge the gap between mathematical theory and control engineering practice in the rapidly evolving PDE control area. The text is divided into five parts featuring: - a literature survey of paradigms and control design methods for PDE systems - the first principle mathematical modeling of applications arising in heat and mass transfer, interconnected multi-agent systems, and piezo-actuated smart elastic structures - the generalization of flatness-based trajectory planning and feedforward control to parabolic and biharmonic PDE systems defined on general higher-dimensional domains - an extension of the backstepping approach to the feedback control and observer design for parabolic PDEs with parallelepiped domain and spatially and time varying parameters - the development of design techniques to realize exponentially stabilizing tracking control - the evaluation in simulations and experiments Control of Higher-Dimensional PDEs — Flatness and Backstepping Designs is an advanced research monograph for graduate students in applied mathematics, control theory, and related fields. The book may serve as a reference to recent developments for researchers and control engineers interested in the analysis and control of systems governed by PDEs.