Lyapunov Exponents and Invariant Manifolds for Random Dynamical Systems in a Banach Space

Lyapunov Exponents and Invariant Manifolds for Random Dynamical Systems in a Banach Space
Title Lyapunov Exponents and Invariant Manifolds for Random Dynamical Systems in a Banach Space PDF eBook
Author Zeng Lian
Publisher American Mathematical Soc.
Pages 119
Release 2010
Genre Mathematics
ISBN 0821846566

Download Lyapunov Exponents and Invariant Manifolds for Random Dynamical Systems in a Banach Space Book in PDF, Epub and Kindle

The authors study the Lyapunov exponents and their associated invariant subspaces for infinite dimensional random dynamical systems in a Banach space, which are generated by, for example, stochastic or random partial differential equations. The authors prove a multiplicative ergodic theorem and then use this theorem to establish the stable and unstable manifold theorem for nonuniformly hyperbolic random invariant sets.

New Trends in Stochastic Analysis and Related Topics

New Trends in Stochastic Analysis and Related Topics
Title New Trends in Stochastic Analysis and Related Topics PDF eBook
Author Huaizhong Zhao
Publisher World Scientific
Pages 458
Release 2012
Genre Mathematics
ISBN 9814360910

Download New Trends in Stochastic Analysis and Related Topics Book in PDF, Epub and Kindle

The volume is dedicated to Professor David Elworthy to celebrate his fundamental contribution and exceptional influence on stochastic analysis and related fields. Stochastic analysis has been profoundly developed as a vital fundamental research area in mathematics in recent decades. It has been discovered to have intrinsic connections with many other areas of mathematics such as partial differential equations, functional analysis, topology, differential geometry, dynamical systems, etc. Mathematicians developed many mathematical tools in stochastic analysis to understand and model random phenomena in physics, biology, finance, fluid, environment science, etc. This volume contains 12 comprehensive review/new articles written by world leading researchers (by invitation) and their collaborators. It covers stochastic analysis on manifolds, rough paths, Dirichlet forms, stochastic partial differential equations, stochastic dynamical systems, infinite dimensional analysis, stochastic flows, quantum stochastic analysis and stochastic Hamilton Jacobi theory. Articles contain cutting edge research methodology, results and ideas in relevant fields. They are of interest to research mathematicians and postgraduate students in stochastic analysis, probability, partial differential equations, dynamical systems, mathematical physics, as well as to physicists, financial mathematicians, engineers, etc.

Continuous and Distributed Systems II

Continuous and Distributed Systems II
Title Continuous and Distributed Systems II PDF eBook
Author Viktor A. Sadovnichiy
Publisher Springer
Pages 395
Release 2015-06-04
Genre Technology & Engineering
ISBN 331919075X

Download Continuous and Distributed Systems II Book in PDF, Epub and Kindle

As in the previous volume on the topic, the authors close the gap between abstract mathematical approaches, such as applied methods of modern algebra and analysis, fundamental and computational mechanics, nonautonomous and stochastic dynamical systems, on the one hand and practical applications in nonlinear mechanics, optimization, decision making theory and control theory on the other. Readers will also benefit from the presentation of modern mathematical modeling methods for the numerical solution of complicated engineering problems in biochemistry, geophysics, biology and climatology. This compilation will be of interest to mathematicians and engineers working at the interface of these fields. It presents selected works of the joint seminar series of Lomonosov Moscow State University and the Institute for Applied System Analysis at National Technical University of Ukraine “Kyiv Polytechnic Institute”. The authors come from Brazil, Germany, France, Mexico, Spain, Poland, Russia, Ukraine and the USA.

Local Entropy Theory of a Random Dynamical System

Local Entropy Theory of a Random Dynamical System
Title Local Entropy Theory of a Random Dynamical System PDF eBook
Author Anthony H. Dooley
Publisher American Mathematical Soc.
Pages 118
Release 2014-12-20
Genre Mathematics
ISBN 1470410559

Download Local Entropy Theory of a Random Dynamical System Book in PDF, Epub and Kindle

In this paper the authors extend the notion of a continuous bundle random dynamical system to the setting where the action of R or N is replaced by the action of an infinite countable discrete amenable group. Given such a system, and a monotone sub-additive invariant family of random continuous functions, they introduce the concept of local fiber topological pressure and establish an associated variational principle, relating it to measure-theoretic entropy. They also discuss some variants of this variational principle. The authors introduce both topological and measure-theoretic entropy tuples for continuous bundle random dynamical systems, and apply variational principles to obtain a relationship between these of entropy tuples. Finally, they give applications of these results to general topological dynamical systems, recovering and extending many recent results in local entropy theory.

Contributions of Mexican Mathematicians Abroad in Pure and Applied Mathematics

Contributions of Mexican Mathematicians Abroad in Pure and Applied Mathematics
Title Contributions of Mexican Mathematicians Abroad in Pure and Applied Mathematics PDF eBook
Author Juan Carlos Pardo Millán
Publisher American Mathematical Soc.
Pages 178
Release 2018
Genre Biography & Autobiography
ISBN 1470442868

Download Contributions of Mexican Mathematicians Abroad in Pure and Applied Mathematics Book in PDF, Epub and Kindle

This volume contains the proceedings of the Second Workshop of Mexican Mathematicians Abroad (II Reunión de Matemáticos Mexicanos en el Mundo), held from December 15–19, 2014, at Centro de Investigación en Matemáticas (CIMAT) in Guanajuato, Mexico. This meeting was the second in a series of ongoing biannual meetings aimed at showcasing the research of Mexican mathematicians based outside of Mexico. The book features articles drawn from eight broad research areas: algebra, analysis, applied mathematics, combinatorics, dynamical systems, geometry, probability theory, and topology. Their topics range from novel applications of non-commutative probability to graph theory, to interactions between dynamical systems and geophysical flows. Several articles survey the fields and problems on which the authors work, highlighting research lines currently underrepresented in Mexico. The research-oriented articles provide either alternative approaches to well-known problems or new advances in active research fields. The wide selection of topics makes the book accessible to advanced graduate students and researchers in mathematics from different fields.

Infinite Dimensional Dynamical Systems

Infinite Dimensional Dynamical Systems
Title Infinite Dimensional Dynamical Systems PDF eBook
Author John Mallet-Paret
Publisher Springer Science & Business Media
Pages 495
Release 2012-10-11
Genre Mathematics
ISBN 1461445221

Download Infinite Dimensional Dynamical Systems Book in PDF, Epub and Kindle

​This collection covers a wide range of topics of infinite dimensional dynamical systems generated by parabolic partial differential equations, hyperbolic partial differential equations, solitary equations, lattice differential equations, delay differential equations, and stochastic differential equations. Infinite dimensional dynamical systems are generated by evolutionary equations describing the evolutions in time of systems whose status must be depicted in infinite dimensional phase spaces. Studying the long-term behaviors of such systems is important in our understanding of their spatiotemporal pattern formation and global continuation, and has been among major sources of motivation and applications of new developments of nonlinear analysis and other mathematical theories. Theories of the infinite dimensional dynamical systems have also found more and more important applications in physical, chemical, and life sciences. This book collects 19 papers from 48 invited lecturers to the International Conference on Infinite Dimensional Dynamical Systems held at York University, Toronto, in September of 2008. As the conference was dedicated to Professor George Sell from University of Minnesota on the occasion of his 70th birthday, this collection reflects the pioneering work and influence of Professor Sell in a few core areas of dynamical systems, including non-autonomous dynamical systems, skew-product flows, invariant manifolds theory, infinite dimensional dynamical systems, approximation dynamics, and fluid flows.​

Infinite Dimensional And Finite Dimensional Stochastic Equations And Applications In Physics

Infinite Dimensional And Finite Dimensional Stochastic Equations And Applications In Physics
Title Infinite Dimensional And Finite Dimensional Stochastic Equations And Applications In Physics PDF eBook
Author Wilfried Grecksch
Publisher World Scientific
Pages 261
Release 2020-04-22
Genre Science
ISBN 9811209804

Download Infinite Dimensional And Finite Dimensional Stochastic Equations And Applications In Physics Book in PDF, Epub and Kindle

This volume contains survey articles on various aspects of stochastic partial differential equations (SPDEs) and their applications in stochastic control theory and in physics.The topics presented in this volume are:This book is intended not only for graduate students in mathematics or physics, but also for mathematicians, mathematical physicists, theoretical physicists, and science researchers interested in the physical applications of the theory of stochastic processes.