Design Fundamentals for Low-Voltage Distribution and Control

Design Fundamentals for Low-Voltage Distribution and Control
Title Design Fundamentals for Low-Voltage Distribution and Control PDF eBook
Author Frank Kussy
Publisher Routledge
Pages 417
Release 2017-11-22
Genre Technology & Engineering
ISBN 1351455966

Download Design Fundamentals for Low-Voltage Distribution and Control Book in PDF, Epub and Kindle

Design Fundamentals for Low-Voltage Distribution and Control provides practical guidelinesfor all aspects of this vital topic. Linking theoretical principles with real hardware designs,the book will help engineers meet safety and regulatory standards, reduce redesign costs,shorten product development and testing cycles, and develop more reliable, efficientequipment.This outstanding reference highlights the determination of reactance and resistances of conductors... discusses heat transfer problems in industrial apparatus . .. and considers shortcircuit and ground fault calculations as well as temperature rise and forces occurring underfault conditions.Design Fundamentals for Low-Voltage Distribution and Control applies thermodynamicprinciples to electrical equipment, including coverage of heat transfer equations, calculationexamples for conductor sizes, and insulation. It provides empirical models to show howhigher order theoretical equations can be practically approximated . . . and includes samplecalculations for magnet size, circuit breakers, fault current, arc interruption, and other propertiesand equipment.In addition, the book compares design requirements for both U.S. and European equipment.Featuring numerous equations, graphs, tables, test procedures, and diagrams, Design Fundamentalsfor Low-Voltage Distribution and Control is an invaluable practical guide for electricaland electronics, design, project, and power engineers involved with the design andapplication of electrical apparatus; and graduate students of electrical engineering, powerengineering, and electro technology.

Analysis and Design of Low-Voltage Power Systems

Analysis and Design of Low-Voltage Power Systems
Title Analysis and Design of Low-Voltage Power Systems PDF eBook
Author Ismail Kasikci
Publisher John Wiley & Sons
Pages 399
Release 2006-12-13
Genre Technology & Engineering
ISBN 3527606467

Download Analysis and Design of Low-Voltage Power Systems Book in PDF, Epub and Kindle

You are responsible for planning and designing electrical power systems? Good. Hopefully you know your way through national and international regulations, safety standards, and all the possible pitfalls you will encounter. You're not sure? This volume provides you with the wealth of experience the author gained in 20 years of practice. The enclosed CAD software accelerates your planning process and makes your final design cost-efficient and secure.

Low Voltage Power MOSFETs

Low Voltage Power MOSFETs
Title Low Voltage Power MOSFETs PDF eBook
Author Jacek Korec
Publisher Springer Science & Business Media
Pages 68
Release 2011-03-30
Genre Technology & Engineering
ISBN 1441993207

Download Low Voltage Power MOSFETs Book in PDF, Epub and Kindle

Low Voltage Power MOSFETs focuses on the design of low voltage power MOSFETs and the relation between the device structure and the performance of a power MOSFET used as a switch in power management applications. This SpringerBriefs close the gap between detailed engineering reference books and the numerous technical papers on the subject of power MOSFETs. The material presented covers low voltage applications extending from battery operated portable electronics, through point of load converters, internet infrastructure, automotive applications, to personal computers and server computers. The issues treated in this volume are explained qualitatively using schematic illustrations, making the discussion easy to follow for all prospective readers.

Design of Low-Voltage, Low-Power Operational Amplifier Cells

Design of Low-Voltage, Low-Power Operational Amplifier Cells
Title Design of Low-Voltage, Low-Power Operational Amplifier Cells PDF eBook
Author Ron Hogervorst
Publisher Springer Science & Business Media
Pages 217
Release 2013-03-09
Genre Technology & Engineering
ISBN 1475724896

Download Design of Low-Voltage, Low-Power Operational Amplifier Cells Book in PDF, Epub and Kindle

Design of Low-Voltage, Low-Power CMOS Operational Amplifier Cells describes the theory and design of the circuit elements that are required to realize a low-voltage, low-power operational amplifier. These elements include constant-gm rail-to-rail input stages, class-AB rail-to-rail output stages and frequency compensation methods. Several examples of each of these circuit elements are investigated. Furthermore, the book illustrates several silicon realizations, giving their measurement results. The text focuses on compact low-voltage low-power operational amplifiers with good performance. Six simple high-performance class-AB amplifiers are realized using a very compact topology making them particularly suitable for use as VLSI library cells. All of the designs can use a supply voltage as low as 3V. One of the amplifier designs dissipates only 50μW with a unity gain frequency of 1.5 MHz. A second set of amplifiers run on a supply voltage slightly above 1V. The amplifiers combine a low power consumption with a gain of 120 dB. In addition, the design of three fully differential operational amplifiers is addressed. Design of Low-Voltage, Low-Power CMOS Operational Amplifier Cells is intended for professional designers of analog circuits. It is also suitable for use as a text book for an advanced course in CMOS operational amplifier design.

Low-Power Electronics Design

Low-Power Electronics Design
Title Low-Power Electronics Design PDF eBook
Author Christian Piguet
Publisher CRC Press
Pages 896
Release 2018-10-03
Genre Technology & Engineering
ISBN 1420039555

Download Low-Power Electronics Design Book in PDF, Epub and Kindle

The power consumption of integrated circuits is one of the most problematic considerations affecting the design of high-performance chips and portable devices. The study of power-saving design methodologies now must also include subjects such as systems on chips, embedded software, and the future of microelectronics. Low-Power Electronics Design covers all major aspects of low-power design of ICs in deep submicron technologies and addresses emerging topics related to future design. This volume explores, in individual chapters written by expert authors, the many low-power techniques born during the past decade. It also discusses the many different domains and disciplines that impact power consumption, including processors, complex circuits, software, CAD tools, and energy sources and management. The authors delve into what many specialists predict about the future by presenting techniques that are promising but are not yet reality. They investigate nanotechnologies, optical circuits, ad hoc networks, e-textiles, as well as human powered sources of energy. Low-Power Electronics Design delivers a complete picture of today's methods for reducing power, and also illustrates the advances in chip design that may be commonplace 10 or 15 years from now.

The Design of Low-Voltage, Low-Power Sigma-Delta Modulators

The Design of Low-Voltage, Low-Power Sigma-Delta Modulators
Title The Design of Low-Voltage, Low-Power Sigma-Delta Modulators PDF eBook
Author Shahriar Rabii
Publisher Springer Science & Business Media
Pages 198
Release 2012-12-06
Genre Technology & Engineering
ISBN 1461551056

Download The Design of Low-Voltage, Low-Power Sigma-Delta Modulators Book in PDF, Epub and Kindle

Oversampling techniques based on sigma-delta modulation are widely used to implement the analog/digital interfaces in CMOS VLSI technologies. This approach is relatively insensitive to imperfections in the manufacturing process and offers numerous advantages for the realization of high-resolution analog-to-digital (A/D) converters in the low-voltage environment that is increasingly demanded by advanced VLSI technologies and by portable electronic systems. In The Design of Low-Voltage, Low-Power Sigma-Delta Modulators, an analysis of power dissipation in sigma-delta modulators is presented, and a low-voltage implementation of a digital-audio performance A/D converter based on the results of this analysis is described. Although significant power savings can typically be achieved in digital circuits by reducing the power supply voltage, the power dissipation in analog circuits actually tends to increase with decreasing supply voltages. Oversampling architectures are a potentially power-efficient means of implementing high-resolution A/D converters because they reduce the number and complexity of the analog circuits in comparison with Nyquist-rate converters. In fact, it is shown that the power dissipation of a sigma-delta modulator can approach that of a single integrator with the resolution and bandwidth required for a given application. In this research the influence of various parameters on the power dissipation of the modulator has been evaluated and strategies for the design of a power-efficient implementation have been identified. The Design of Low-Voltage, Low-Power Sigma-Delta Modulators begins with an overview of A/D conversion, emphasizing sigma-delta modulators. It includes a detailed analysis of noise in sigma-delta modulators, analyzes power dissipation in integrator circuits, and addresses practical issues in the circuit design and testing of a high-resolution modulator. The Design of Low-Voltage, Low-Power Sigma-Delta Modulators will be of interest to practicing engineers and researchers in the areas of mixed-signal and analog integrated circuit design.

Low Power and Low Voltage Circuit Design with the FGMOS Transistor

Low Power and Low Voltage Circuit Design with the FGMOS Transistor
Title Low Power and Low Voltage Circuit Design with the FGMOS Transistor PDF eBook
Author Esther Rodriguez-Villegas
Publisher IET
Pages 320
Release 2006-10-02
Genre Technology & Engineering
ISBN 0863416179

Download Low Power and Low Voltage Circuit Design with the FGMOS Transistor Book in PDF, Epub and Kindle

Motivated by consumer demand for smaller, more portable electronic devices that offer more features and operate for longer on their existing battery packs, cutting edge electronic circuits need to be ever more power efficient. For the circuit designer, this requires an understanding of the latest low voltage and low power (LV/LP) techniques, one of the most promising of which makes use of the floating gate MOS (FGMOS) transistor.