Low-Temperature Stress in Plants: Molecular Responses, Tolerance Mechanisms, Plant Biodesign and Breeding Applications

Low-Temperature Stress in Plants: Molecular Responses, Tolerance Mechanisms, Plant Biodesign and Breeding Applications
Title Low-Temperature Stress in Plants: Molecular Responses, Tolerance Mechanisms, Plant Biodesign and Breeding Applications PDF eBook
Author Jin Xu
Publisher Frontiers Media SA
Pages 155
Release 2024-05-17
Genre Science
ISBN 2832549195

Download Low-Temperature Stress in Plants: Molecular Responses, Tolerance Mechanisms, Plant Biodesign and Breeding Applications Book in PDF, Epub and Kindle

Low-temperature stress is the primary abiotic stress that affects the growth and development of plants and their geographical distribution. This can lead to the solidification of membrane lipids and decrease of enzymatic reaction rate in plants in a relatively short time, or indirectly affect the imbalance of respiration and photosynthesis, accumulation of toxic substances, ATP depletion, cell solute leakage and wilting due to water loss. Low-temperature stress can be divided into chilling stress and freezing stress according to the damage caused to plants. Both chilling and freezing stress drastically threaten global food security and species diversity in the northern and frigid temperate zones. Once plants experience low-temperature stress, the regulation mechanism of gene expression is rapidly activated to cope with the adverse environment.

Cold Tolerance in Plants

Cold Tolerance in Plants
Title Cold Tolerance in Plants PDF eBook
Author Shabir Hussain Wani
Publisher Springer
Pages 209
Release 2018-11-24
Genre Science
ISBN 3030014150

Download Cold Tolerance in Plants Book in PDF, Epub and Kindle

Cold stress is one of the prevalent environmental stresses affecting crop productivity, particularly in temperate regions. Numerous plant types of tropical or subtropical origin are injured or killed by non-freezing low temperature, and display a range of symptoms of chilling injury such as chlorosis, necrosis, or growth retardation. In contrast, chilling tolerant species thrive well at such temperatures. To thrive under cold stress conditions, plants have evolved complex mechanisms to identify peripheral signals that allow them to counter varying environmental conditions. These mechanisms include stress perception, signal transduction, transcriptional activation of stress-responsive target genes, and synthesis of stress-related proteins and other molecules, which help plants to strive through adverse environmental conditions. Conventional breeding methods have met with limited success in improving the cold tolerance of important crop plants through inter-specific or inter-generic hybridization. A better understanding of physiological, biochemical and molecular responses and tolerance mechanisms, and discovery of novel stress-responsive pathways and genes may contribute to efficient engineering strategies that enhance cold stress tolerance. It is therefore imperative to accelerate the efforts to unravel the biochemical, physiological and molecular mechanisms underlying cold stress tolerance in plants. Through this new book, we intend to integrate the contributions from plant scientists targeting cold stress tolerance mechanisms using physiological, biochemical, molecular, structural and systems biology approaches. It is hoped that this collection will serve as a reference source for those who are interested in or are actively engaged in cold stress research.

Heat Stress Tolerance in Plants

Heat Stress Tolerance in Plants
Title Heat Stress Tolerance in Plants PDF eBook
Author Shabir H. Wani
Publisher John Wiley & Sons
Pages 315
Release 2020-04-06
Genre Science
ISBN 1119432367

Download Heat Stress Tolerance in Plants Book in PDF, Epub and Kindle

Demystifies the genetic, biochemical, physiological, and molecular mechanisms underlying heat stress tolerance in plants Heat stress—when high temperatures cause irreversible damage to plant function or development—severely impairs the growth and yield of agriculturally important crops. As the global population mounts and temperatures continue to rise, it is crucial to understand the biochemical, physiological, and molecular mechanisms of thermotolerance to develop ‘climate-smart’ crops. Heat Stress Tolerance in Plants provides a holistic, cross-disciplinary survey of the latest science in this important field. Presenting contributions from an international team of plant scientists and researchers, this text examines heat stress, its impact on crop plants, and various mechanisms to modulate tolerance levels. Topics include recent advances in molecular genetic approaches to increasing heat tolerance, the potential role of biochemical and molecular markers in screening germplasm for thermotolerance, and the use of next-generation sequencing to unravel the novel genes associated with defense and metabolite pathways. This insightful book: Places contemporary research on heat stress in plants within the context of global climate change and population growth Includes diverse analyses from physiological, biochemical, molecular, and genetic perspectives Explores various approaches to increasing heat tolerance in crops of high commercial value, such as cotton Discusses the applications of plant genomics in the development of thermotolerant ‘designer crops’ An important contribution to the field, Heat Stress Tolerance in Plants is an invaluable resource for scientists, academics, students, and researchers working in fields of pulse crop biochemistry, physiology, genetics, breeding, and biotechnology.

Crop Responses and Adaptations to Temperature Stress

Crop Responses and Adaptations to Temperature Stress
Title Crop Responses and Adaptations to Temperature Stress PDF eBook
Author Amarjit Basra
Publisher CRC Press
Pages 317
Release 2023-04-28
Genre Technology & Engineering
ISBN 1000945707

Download Crop Responses and Adaptations to Temperature Stress Book in PDF, Epub and Kindle

Examine the ways in which various plants respond when exposed to high and low temperatures! The growing demand for food makes breeding for high-yielding crops with built-in resistance against environmental constraints one of the most important challenges for plant breeders today. Crop Responses and Adaptations to Temperature Stress investigates the adaptive mechanisms plants have evolved in response to unfavorable temperature conditions. It describes gene transfer technology and other tolerance improvement techniques that aid in developing stress-tolerant plants. Adverse environmental stress conditions, such as extreme temperatures, affect the productivity of important world food crops by inhibiting plant growth and development. Crop Responses and Adaptations to Temperature Stress provides valuable information on the mechanisms of stress tolerance in plants that encourage growth and enhance yield performance. Agriculture professionals, researchers, and plant breeders will benefit from the ideas shared on such topics as: mechanisms of chilling injury and tolerance injury and acclimation of root system functions during chilling temperatures mechanisms of cold acclimation signal transduction under low-temperature stress mechanisms of thermotolerance in crops control of the heat shock response in crop plants the effects of heat stress on cereal yield and quality Crop Responses and Adaptations to Temperature Stress presents detailed discussions on the effects and outcomes of crop exposure to low and high temperatures. The textual information is liberally supplemented with visual representations of field experiment data as well as comprehensive tables and schematic drawings. In addition to a detailed review of current knowledge on the molecular biology of plant responses to temperature stress and an introduction to biotechnological advances in improving crop tolerance, Crop Responses and Adaptations to Temperature Stress suggests avenues for further study and speculates on the implications of such work for the future of food production.

Crop Responses and Adaptations to Temperature Stress

Crop Responses and Adaptations to Temperature Stress
Title Crop Responses and Adaptations to Temperature Stress PDF eBook
Author Amarjit Basra
Publisher CRC Press
Pages 336
Release 2000-12-14
Genre Technology & Engineering
ISBN 9781560228905

Download Crop Responses and Adaptations to Temperature Stress Book in PDF, Epub and Kindle

Examine the ways in which various plants respond when exposed to high and low temperatures! The growing demand for food makes breeding for high-yielding crops with built-in resistance against environmental constraints one of the most important challenges for plant breeders today. Crop Responses and Adaptations to Temperature Stress investigates the adaptive mechanisms plants have evolved in response to unfavorable temperature conditions. It describes gene transfer technology and other tolerance improvement techniques that aid in developing stress-tolerant plants. Adverse environmental stress conditions, such as extreme temperatures, affect the productivity of important world food crops by inhibiting plant growth and development. Crop Responses and Adaptations to Temperature Stress provides valuable information on the mechanisms of stress tolerance in plants that encourage growth and enhance yield performance. Agriculture professionals, researchers, and plant breeders will benefit from the ideas shared on such topics as: mechanisms of chilling injury and tolerance injury and acclimation of root system functions during chilling temperatures mechanisms of cold acclimation signal transduction under low-temperature stress mechanisms of thermotolerance in crops control of the heat shock response in crop plants the effects of heat stress on cereal yield and quality Crop Responses and Adaptations to Temperature Stress presents detailed discussions on the effects and outcomes of crop exposure to low and high temperatures. The textual information is liberally supplemented with visual representations of field experiment data as well as comprehensive tables and schematic drawings. In addition to a detailed review of current knowledge on the molecular biology of plant responses to temperature stress and an introduction to biotechnological advances in improving crop tolerance, Crop Responses and Adaptations to Temperature Stress suggests avenues for further study and speculates on the implications of such work for the future of food production.

Abiotic Stress Adaptation and Tolerance Mechanisms in Crop Plants

Abiotic Stress Adaptation and Tolerance Mechanisms in Crop Plants
Title Abiotic Stress Adaptation and Tolerance Mechanisms in Crop Plants PDF eBook
Author Jiban Shrestha
Publisher Frontiers Media SA
Pages 613
Release 2024-06-27
Genre Science
ISBN 2832550924

Download Abiotic Stress Adaptation and Tolerance Mechanisms in Crop Plants Book in PDF, Epub and Kindle

Agricultural communities are being affected by climate change. Droughts, heat waves, cold snaps, and flooding are all regarded as severe threats to crop production as they hinder plant growth and development, resulting in yield losses. Plants respond to stress through a complex process that includes changes in physiological and biochemical processes, gene expression, and alterations in the amounts of metabolites and proteins at different developmental stages. This special issue will focus on recent advances in the use of various traditional and modern biotechnological strategies to understand stress adaptation and tolerance mechanisms including (but not limited to) genomics, transcriptomics, metabolomics, proteomics, miRNA, genome editing, transgenic plants, exogenous application of plant growth regulators, and so on. Abiotic stress is a key constraint to agricultural production around the world. Water deficit, excess precipitation, high and low temperature, and salinity are the most prevalent abiotic stresses. Compaction, mineral availability, and pH-related stressors are among the others. This Research Topic aims to highlight the most recent breakthroughs in plant responses to abiotic stresses and adaptation/tolerance strategies. This special issue provides the advanced toolkit and technologies that are used to investigate and understand plant responses to abiotic stress. The purpose of this special issue is to give a platform for scientists and academics from across the world to promote, share, and discuss new concerns and advancements in the field of abiotic stress in plants. Current updates and recent developments in the physiological, molecular, and genetic perspectives on combined and sequential stress responses and tolerance in field crops are expected in articles. Original research and review articles dealing with abiotic stress are welcomed. In this special issue, potential topics include, but are not limited to: • Physiological, biochemical and molecular responses of plants under abiotic stress. • Systems biology approaches to study abiotic stress in crop plants. • Phenotyping for abiotic stress tolerance in crops. • Physiological and molecular characterization of crop tolerance to abiotic stresses. • Molecular breeding for developing and improving abiotic stress resilience in crops. • Microbial mitigation of abiotic stress responses in crops • Omics technologies for abiotic stress tolerance in plants. • Performance of novel GMO crops under abiotic stress conditions. • CRISPR-Cas Genome editing tools for the Improvement of abiotic stress tolerance in plants. • Crop production in abiotic stress conditions.

Molecular and Physiological Insights into Plant Stress Tolerance and Applications in Agriculture

Molecular and Physiological Insights into Plant Stress Tolerance and Applications in Agriculture
Title Molecular and Physiological Insights into Plant Stress Tolerance and Applications in Agriculture PDF eBook
Author Jen-Tsung Chen
Publisher Bentham Science Publishers
Pages 235
Release 2023-11-21
Genre Science
ISBN 9815136577

Download Molecular and Physiological Insights into Plant Stress Tolerance and Applications in Agriculture Book in PDF, Epub and Kindle

Molecular and Physiological Insights into Plant Stress Tolerance and Applications in Agriculture is an edited volume that presents research on plant stress responses at both molecular and physiological levels. Key Features: - Emphasizes the morphological and physiological reactions of plants and the underlying molecular mechanisms when faced with stress from environmental or pathogenic factors. - Explores microbial dynamics within the plant rhizosphere and the application of plant growth-promoting bacteria as biofertilizers and endophytes as biocontrol agents to enhance crop growth and productivity for sustainable agriculture. - Systematically summarizes molecular mechanisms in plant stress tolerance and discusses the current applications of biotechnology, nanotechnology, and precision breeding to obtain stress-tolerant crops, contributing to climate-smart agriculture and global food security. - Includes contributions and references from multidisciplinary experts in plant stress physiology, plant molecular biology, plant biotechnology, agronomy, agriculture, nanotechnology, and environmental science. The content of the book is aimed at addressing UN SDG goals 2, 12, and 15 to achieve zero hunger and responsible consumption and production, and to sustainable use of terrestrial ecosystems, respectively. This comprehensive resource is suitable for researchers, students, teachers, agriculturists, and readers in plant science, and allied disciplines. Readership: Researchers, students, teachers, agriculturists, and readers in plant science, and allied disciplines.