Low Power VCO Design in CMOS

Low Power VCO Design in CMOS
Title Low Power VCO Design in CMOS PDF eBook
Author Marc Tiebout
Publisher Springer Science & Business Media
Pages 126
Release 2006-01-25
Genre Technology & Engineering
ISBN 354029256X

Download Low Power VCO Design in CMOS Book in PDF, Epub and Kindle

This work covers the design of CMOS fully integrated low power low phase noise voltage controlled oscillators for telecommunication or datacommuni- tion systems. The need for low power is obvious, as mobile wireless telecommunications are battery operated. As wireless telecommunication systems use oscillators in frequency synthesizers for frequency translation, the selectivity and signal to noise ratio of receivers and transmitters depend heavily on the low phase noise performance of the implemented oscillators. Datacommunication s- tems need low jitter, the time-domain equivalent of low phase noise, clocks for data detection and recovery. The power consumption is less critical. The need for multi-band and multi-mode systems pushes the high-integration of telecommunication systems. This is o?ered by sub-micron CMOS feat- ing digital ?exibility. The recent crisis in telecommunication clearly shows that mobile hand-sets became mass-market high-volume consumer products, where low-cost is of prime importance. This need for low-cost products - livens tremendously research towards CMOS alternatives for the bipolar or BiCMOS solutions in use today.

Design of High-Performance CMOS Voltage-Controlled Oscillators

Design of High-Performance CMOS Voltage-Controlled Oscillators
Title Design of High-Performance CMOS Voltage-Controlled Oscillators PDF eBook
Author Liang Dai
Publisher Springer Science & Business Media
Pages 186
Release 2003
Genre Computers
ISBN 9781402072383

Download Design of High-Performance CMOS Voltage-Controlled Oscillators Book in PDF, Epub and Kindle

Design of High-Performance CMOS Voltage-Controlled Oscillators presents a phase noise modeling framework for CMOS ring oscillators. The analysis considers both linear and nonlinear operation. It indicates that fast rail-to-rail switching has to be achieved to minimize phase noise. Additionally, in conventional design the flicker noise in the bias circuit can potentially dominate the phase noise at low offset frequencies. Therefore, for narrow bandwidth PLLs, noise up conversion for the bias circuits should be minimized. We define the effective Q factor (Qeff) for ring oscillators and predict its increase for CMOS processes with smaller feature sizes. Our phase noise analysis is validated via simulation and measurement results. The digital switching noise coupled through the power supply and substrate is usually the dominant source of clock jitter. Improving the supply and substrate noise immunity of a PLL is a challenging job in hostile environments such as a microprocessor chip where millions of digital gates are present.

Low-Power Digital VLSI Design

Low-Power Digital VLSI Design
Title Low-Power Digital VLSI Design PDF eBook
Author Abdellatif Bellaouar
Publisher Springer Science & Business Media
Pages 539
Release 2012-12-06
Genre Technology & Engineering
ISBN 1461523559

Download Low-Power Digital VLSI Design Book in PDF, Epub and Kindle

Low-Power Digital VLSI Design: Circuits and Systems addresses both process technologies and device modeling. Power dissipation in CMOS circuits, several practical circuit examples, and low-power techniques are discussed. Low-voltage issues for digital CMOS and BiCMOS circuits are emphasized. The book also provides an extensive study of advanced CMOS subsystem design. A low-power design methodology is presented with various power minimization techniques at the circuit, logic, architecture and algorithm levels. Features: Low-voltage CMOS device modeling, technology files, design rules Switching activity concept, low-power guidelines to engineering practice Pass-transistor logic families Power dissipation of I/O circuits Multi- and low-VT CMOS logic, static power reduction circuit techniques State of the art design of low-voltage BiCMOS and CMOS circuits Low-power techniques in CMOS SRAMS and DRAMS Low-power on-chip voltage down converter design Numerous advanced CMOS subsystems (e.g. adders, multipliers, data path, memories, regular structures, phase-locked loops) with several design options trading power, delay and area Low-power design methodology, power estimation techniques Power reduction techniques at the logic, architecture and algorithm levels More than 190 circuits explained at the transistor level.

Low Power Digital CMOS Design

Low Power Digital CMOS Design
Title Low Power Digital CMOS Design PDF eBook
Author Anantha P. Chandrakasan
Publisher Springer Science & Business Media
Pages 419
Release 2012-12-06
Genre Technology & Engineering
ISBN 1461523257

Download Low Power Digital CMOS Design Book in PDF, Epub and Kindle

Power consumption has become a major design consideration for battery-operated, portable systems as well as high-performance, desktop systems. Strict limitations on power dissipation must be met by the designer while still meeting ever higher computational requirements. A comprehensive approach is thus required at all levels of system design, ranging from algorithms and architectures to the logic styles and the underlying technology. Potentially one of the most important techniques involves combining architecture optimization with voltage scaling, allowing a trade-off between silicon area and low-power operation. Architectural optimization enables supply voltages of the order of 1 V using standard CMOS technology. Several techniques can also be used to minimize the switched capacitance, including representation, optimizing signal correlations, minimizing spurious transitions, optimizing sequencing of operations, activity-driven power down, etc. The high- efficiency of DC-DC converter circuitry required for efficient, low-voltage and low-current level operation is described by Stratakos, Sullivan and Sanders. The application of various low-power techniques to a chip set for multimedia applications shows that orders-of-magnitude reduction in power consumption is possible. The book also features an analysis by Professor Meindl of the fundamental limits of power consumption achievable at all levels of the design hierarchy. Svensson, of ISI, describes emerging adiabatic switching techniques that can break the CV2f barrier and reduce the energy per computation at a fixed voltage. Srivastava, of AT&T, presents the application of aggressive shut-down techniques to microprocessor applications.

CMOS PLLs and VCOs for 4G Wireless

CMOS PLLs and VCOs for 4G Wireless
Title CMOS PLLs and VCOs for 4G Wireless PDF eBook
Author Adem Aktas
Publisher Springer Science & Business Media
Pages 189
Release 2007-05-08
Genre Technology & Engineering
ISBN 1402080603

Download CMOS PLLs and VCOs for 4G Wireless Book in PDF, Epub and Kindle

CMOS PLLs and VCOs for 4G Wireless is the first book devoted to the subject of CMOS PLL and VCO design for future broadband 4th generation wireless devices. These devices will be handheld-centric, requiring very low power consumption and small footprint. They will be able to work across multiple bands and multiple standards covering WWAN (GSM,WCDMA) ,WLAN(802.11 a/b/g) and WPAN(Bluetooth) with different modulations, channel bandwidths , phase noise requirements ,etc. As such, this book discusses design, modeling and optimization techniques for low power fully integrated broadband PLLs and VCOs in deep submicron CMOS. First, the PLL and VCO performances are studied in the context of the chosen multi-band multi-standard, radio architecture and the adopted frequency plan. Next a thorough study of the design requirements for broadband PLL/VCO design is conducted together with modeling techniques for noise sources in a PLL and VCO focusing on optimization of integrated phase noise for multi-carrier OFDM 64-QAM type applications. Design examples for multi-standard 802.111a/b/g as well as for GSM/WCDMA are fully described and experimental results from 0.18 micron CMOS test chips have demonstrated the validity of the proposed design and optimization techniques. Equally important the work describes techniques for robust high volume production of RF radios in general and for integrated PLL/VCO design in particular including issues such as supply sensitivity, ground bounce and calibration mechanisms. CMOS PLLS and VCOs for 4G Wireless will be of interest to graduate students in electrical and computer engineering, design managers and RFIC designers in wireless semiconductor companies.

High-Frequency Integrated Circuits

High-Frequency Integrated Circuits
Title High-Frequency Integrated Circuits PDF eBook
Author Sorin Voinigescu
Publisher Cambridge University Press
Pages 921
Release 2013-02-28
Genre Technology & Engineering
ISBN 0521873029

Download High-Frequency Integrated Circuits Book in PDF, Epub and Kindle

A transistor-level, design-intensive overview of high speed and high frequency monolithic integrated circuits for wireless and broadband systems from 2 GHz to 200 GHz, this comprehensive text covers high-speed, RF, mm-wave, and optical fibre circuits using nanoscale CMOS, SiGe BiCMOS, and III-V technologies. Step-by-step design methodologies, end-of chapter problems, and practical simulation and design projects are provided, making this an ideal resource for senior undergraduate and graduate courses in circuit design. With an emphasis on device-circuit topology interaction and optimization, it gives circuit designers and students alike an in-depth understanding of device structures and process limitations affecting circuit performance.

Low Power Low Phase Noise Fully Integrated VCO-design in Standard CMOS

Low Power Low Phase Noise Fully Integrated VCO-design in Standard CMOS
Title Low Power Low Phase Noise Fully Integrated VCO-design in Standard CMOS PDF eBook
Author Marc Tiebout
Publisher
Pages 155
Release 2005
Genre
ISBN

Download Low Power Low Phase Noise Fully Integrated VCO-design in Standard CMOS Book in PDF, Epub and Kindle