Low-Dimensional Electronic Properties of Molybdenum Bronzes and Oxides
Title | Low-Dimensional Electronic Properties of Molybdenum Bronzes and Oxides PDF eBook |
Author | C. Schlenker |
Publisher | Springer Science & Business Media |
Pages | 461 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 9400904479 |
The history of low dimensional conductors goes back to the prediction, more than forty years ago, by Peierls, of the instability of a one dimensional metallic chain, leading to what is known now as the charge density wave state. At the same time, Frohlich suggested that an "ideal" conductivity could be associated to the sliding of this charge density wave. Since then, several classes of compounds, including layered transition metal dichalcogenides, quasi one-dimensional organic conduc tors and transition metal tri- and tretrachalcogenides have been extensively studied. The molybdenum bronzes or oxides have been discovered or rediscovered as low dimensional conductors in this last decade. A considerable amount of work has now been performed on this subject and it was time to collect some review papers in a single book. Although this book is focused on the molybdenum bronzes and oxides, it has a far more general interest in the field of low dimensional conductors, since several of the molybdenum compounds provide, from our point of view, model systems. This is the case for the quasi one-dimensional blue bronze, especially due to the availability of good quality large single crystals. This book is intended for scientists belonging to the fields of solid state physics and chemistry as well as materials science. It should especially be useful to many graduate students involved in low dimensional oxides. It has been written by recognized specialists of low dimensional systems.
Physics and Chemistry of Low-Dimensional Inorganic Conductors
Title | Physics and Chemistry of Low-Dimensional Inorganic Conductors PDF eBook |
Author | C. Schlenker |
Publisher | Springer Science & Business Media |
Pages | 477 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 1461311497 |
The field of low-dimensional conductors has been very active for more than twenty years. It has grown continuously and both the inorganic and organic materials have remark able properties, such as charge and spin density waves and superconductivity. The discovery of superconductivity at high temperature in copper-based quasi two-dimensional conducting oxides nearly ten years ago has further enlarged the field and stimulated new research on inorganic conductors. It was obviously impossible to cover such a broad field in a ten day Institute and it seemed pertinent to concentrate on inorganic conductors, excluding the high Tc superconducting oxides. In this context, it was highly desirable to include both physics and chemistry in the same Institute in order to tighten or in some cases to establish links between physicists and chemists. This Advanced Study Institute is the continuation of a series of similar ones which have taken place every few years since 1974. 73 participants coming from 13 countries have taken part in this School at the beautiful site of the Centre de Physique des Houches in the Mont-Blanc mountain range. The scientific programme included more than forty lectures and seminars, two poster sessions and ten short talks. Several discussion sessions were organized for the evenings, one on New Materials, one on New Topics and one on the special problem of the Fermi and Luttinger liquids. The scientific activity was kept high from the beginning to the end of the Institute.
Electron Spectroscopies Applied to Low-Dimensional Structures
Title | Electron Spectroscopies Applied to Low-Dimensional Structures PDF eBook |
Author | H.P. Hughes |
Publisher | Springer Science & Business Media |
Pages | 513 |
Release | 2006-04-11 |
Genre | Science |
ISBN | 0306471264 |
The effect of reduced dimensionality, inherent at the crystallographic level, on the electronic properties of low dimensional materials can be dramatic, leading to structural and electronic instabilities—including supercond- tivity at high temperatures, charge density waves, and localisation—which continue to attract widespread interest. The layered transition metal dichalcogenides have engaged attention for many years, partly arising from the charge density wave effects which some show and the controlled way in which their properties can be modified by intercalation, while the development of epitaxial growth techniques has opened up promising areas based on dichalcogenide heterostructures and quantum wells. The discovery of high-temperature superconducting oxides, and the realisation that polymeric materials too can be exploited in a controlled way for various opto-electronic applications, have further sti- lated interest in the effects of structural dimensionality. It seems timely therefore to draw together some strands of recent research involving a range of disparate materials which share some common char- teristics of low dimensionality. This resulting volume is aimed at researchers with specialist interests in the particular materials discussed but who may also wish to examine the related phenomena observed in different systems, and at a more general solid state audience with broad interests in electronic properties and low dimensional phenomena. Space limitations have required us to be selective as regards particular materials, though we have managed to include those as dissimilar as polymeric semiconductors, superconducting oxides, bronzes and layered chalcogenides.
New Horizons in Low-Dimensional Electron Systems
Title | New Horizons in Low-Dimensional Electron Systems PDF eBook |
Author | Hideo Aoki |
Publisher | Springer Science & Business Media |
Pages | 498 |
Release | 1991-12-31 |
Genre | Science |
ISBN | 9780792313021 |
In Bird of Passage by Rudolf Peierls, we find a paragraph in which he de scribes his Cambridge days in the 1930s: On these [relativistic field theory] problems my main contacts were Dirac, and the younger theoreticians. These included in particular Nevill (now Sir Nevill) Mott, perhaps the friendliest among many kind and friendly people we met then. Professor Kamimura became associated with Sir Rudolf Peierls in the 1950s, when he translated, with his colleagues, Peierls's 1955 textbook, Quantum Theory of Solids, into Japanese. This edition, to which Sir Rudolf himself contributed a preface, benefitted early generations of Japanese solid state physicists. Later in 1974/5, during a sabbatical year spent at the Cavendish Laboratory, Professor Kamimura met and began a long association with Sir Nevill Mott. In particular, they developed ideas for disordered systems. One of the outcomes is a paper coauthored by them on ESR-induced variable range hopping in doped semiconductors. A series of works on disordered systems, together with those on two-dimensional systems, have served as building blocks for Physics of Interacting Electrons in Disordered Systems, in the International Series of Monographs on Physics, coauthored by Aoki and published in 1989 by the Oxford University Press. Soon after Professor Kamimura obtained a D. Sc. in 1959 for the work on the ligand field theory under the supervision ofMasao Kotani, his strong con nections in the international physical community began when he worked at the Bell Telephone Laboratories in 1961/64.
Low-Dimensional Conductors and Superconductors
Title | Low-Dimensional Conductors and Superconductors PDF eBook |
Author | D. Jerome |
Publisher | Springer Science & Business Media |
Pages | 524 |
Release | 2013-12-14 |
Genre | Technology & Engineering |
ISBN | 1489936114 |
Research activities in low dimensional conductors have shown a rapid growth since 1972 and have led to the discovery of new and remarkable phy sical properties unique to both molecular and inorganic conductors exhibi ting one-dimensional transport behaviour. This NATO Institute was a conti nuation of aseries of NATO Advanced Study Institutes of Worshops which took place at regular intervals till 1979. This is the first time, however, that charge density wave transport and electronic properties of low dimen sional organic conductors are treated on an equal footing. The program of the Institute was framed by tutorial lectures in the theories and experiments of low dimensional conductors. The bulk of the course covered two series of low-dimensional mate rials with their respective properties. 1) The I-D inorganic conductors exhibiting the phenomena of sliding charge density waves, narrow band noise, memory effects, etc ..• 2) Low-dimensional crystallized organic conductors giving rise to various possibilities of ground states, spin-Peierls, spin density wave, Peierls, superconductivity and magnetic-field induced spin density wave, etc ... Since it has been established from the beginning that this Institute was to be devoted essentially to the Physics of Low Dimensional Conductors, only one main course summarized the progress in chemistry and material preparation.
Orbital Approach to the Electronic Structure of Solids
Title | Orbital Approach to the Electronic Structure of Solids PDF eBook |
Author | Enric Canadell |
Publisher | OUP Oxford |
Pages | 364 |
Release | 2012-01-12 |
Genre | Science |
ISBN | 0191627410 |
This book provides an intuitive yet sound understanding of how structure and properties of solids may be related. The natural link is provided by the band theory approach to the electronic structure of solids. The chemically insightful concept of orbital interaction and the essential machinery of band theory are used throughout the book to build links between the crystal and electronic structure of periodic systems. In such a way, it is shown how important tools for understanding properties of solids like the density of states, the Fermi surface etc. can be qualitatively sketched and used to either understand the results of quantitative calculations or to rationalize experimental observations. Extensive use of the orbital interaction approach appears to be a very efficient way of building bridges between physically and chemically based notions to understand the structure and properties of solids.
Neutron Scattering in Layered Copper-Oxide Superconductors
Title | Neutron Scattering in Layered Copper-Oxide Superconductors PDF eBook |
Author | Albert Furrer |
Publisher | Springer Science & Business Media |
Pages | 416 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 9401512841 |
The phenomenon of superconductivity - after its discovery in metals such as mercury, lead, zinc, etc. by Kamerlingh-Onnes in 19]] - has attracted many scientists. Superconductivity was described in a very satisfactory manner by the model proposed by Bardeen, Cooper and Schrieffer, and by the extensions proposed by Abrikosov, Gorkov and Eliashberg. Relations were established between superconductivity and the fundamental properties of solids, resulting in a possible upper limit of the critical temperature at about 23 K. The breakthrough that revolutionized the field was made in 1986 by Bednorz and Muller with the discovery of high-temperature superconductivity in layered copper-oxide perovskites. Today the record in transition temperature is 133 K for a Hg based cuprate system. The last decade has not only seen a revolution in the size of the critical temperature, but also in the myriads of research groups that entered the field. In addition, high-temperature superconductivity became a real interdisciplinary topic and brought together physicists, chemists and materials scientists who started to investigate the new compounds with almost all the available experimental techniques and theoretical methods. As a consequence we have witnessed an avalanche of publications which has never occurred in any field of science so far and which makes it difficult for the individual to be thoroughly informed about the relevant results and trends. Neutron scattering has outstanding properties in the elucidation of the basic properties of high-temperature superconductors.