Locally Controlled Photonic Crystal Devices with Coupled Quantum Dots
Title | Locally Controlled Photonic Crystal Devices with Coupled Quantum Dots PDF eBook |
Author | Andrei Faraon |
Publisher | |
Pages | 308 |
Release | 2009 |
Genre | |
ISBN |
Quantum Dots
Title | Quantum Dots PDF eBook |
Author | Alexander Tartakovskii |
Publisher | Cambridge University Press |
Pages | 377 |
Release | 2012-07-19 |
Genre | Science |
ISBN | 1107012589 |
A comprehensive review of cutting-edge solid state research, focusing on quantum dot nanostructures, for graduate students and researchers.
Self-Assembled Quantum Dots
Title | Self-Assembled Quantum Dots PDF eBook |
Author | Zhiming M Wang |
Publisher | Springer Science & Business Media |
Pages | 470 |
Release | 2007-11-29 |
Genre | Technology & Engineering |
ISBN | 0387741917 |
This multidisciplinary book provides up-to-date coverage of carrier and spin dynamics and energy transfer and structural interaction among nanostructures. Coverage also includes current device applications such as quantum dot lasers and detectors, as well as future applications to quantum information processing. The book will serve as a reference for anyone working with or planning to work with quantum dots.
Nano-photonics in III-V Semiconductors for Integrated Quantum Optical Circuits
Title | Nano-photonics in III-V Semiconductors for Integrated Quantum Optical Circuits PDF eBook |
Author | Nicholas Andrew Wasley |
Publisher | Springer Science & Business Media |
Pages | 139 |
Release | 2013-09-05 |
Genre | Technology & Engineering |
ISBN | 3319015141 |
This thesis breaks new ground in the physics of photonic circuits for quantum optical applications. The photonic circuits are based either on ridge waveguides or photonic crystals, with embedded quantum dots providing the single qubit, quantum optical emitters. The highlight of the thesis is the first demonstration of a spin-photon interface using an all-waveguide geometry, a vital component of a quantum optical circuit, based on deterministic single photon emission from a single quantum dot. The work makes a further important contribution to the field by demonstrating the effects and limitations that inevitable disorder places on photon propagation in photonic crystal waveguides, a further key component of quantum optical circuits. Overall the thesis offers a number of highly novel contributions to the field; those on chip circuits may prove to be the only means of scaling up the highly promising quantum-dot-based quantum information technology.
Photonic Crystals
Title | Photonic Crystals PDF eBook |
Author | John D. Joannopoulos |
Publisher | Princeton University Press |
Pages | 305 |
Release | 2011-10-30 |
Genre | Science |
ISBN | 1400828244 |
Since it was first published in 1995, Photonic Crystals has remained the definitive text for both undergraduates and researchers on photonic band-gap materials and their use in controlling the propagation of light. This newly expanded and revised edition covers the latest developments in the field, providing the most up-to-date, concise, and comprehensive book available on these novel materials and their applications. Starting from Maxwell's equations and Fourier analysis, the authors develop the theoretical tools of photonics using principles of linear algebra and symmetry, emphasizing analogies with traditional solid-state physics and quantum theory. They then investigate the unique phenomena that take place within photonic crystals at defect sites and surfaces, from one to three dimensions. This new edition includes entirely new chapters describing important hybrid structures that use band gaps or periodicity only in some directions: periodic waveguides, photonic-crystal slabs, and photonic-crystal fibers. The authors demonstrate how the capabilities of photonic crystals to localize light can be put to work in devices such as filters and splitters. A new appendix provides an overview of computational methods for electromagnetism. Existing chapters have been considerably updated and expanded to include many new three-dimensional photonic crystals, an extensive tutorial on device design using temporal coupled-mode theory, discussions of diffraction and refraction at crystal interfaces, and more. Richly illustrated and accessibly written, Photonic Crystals is an indispensable resource for students and researchers. Extensively revised and expanded Features improved graphics throughout Includes new chapters on photonic-crystal fibers and combined index-and band-gap-guiding Provides an introduction to coupled-mode theory as a powerful tool for device design Covers many new topics, including omnidirectional reflection, anomalous refraction and diffraction, computational photonics, and much more.
Electron and Photon Confinement in Semiconductor Nanostructures
Title | Electron and Photon Confinement in Semiconductor Nanostructures PDF eBook |
Author | Benoît Deveaud |
Publisher | IOS Press |
Pages | 584 |
Release | 2003 |
Genre | Science |
ISBN | 9781586033521 |
The purpose of this course was to give an overview of the physics of artificial semiconductor structures confining electrons and photons. It furnishes the background for several applications in particular in the domain of optical devices, lasers, light emitting diodes or photonic crystals. The effects related to the microactivity polaritons, which are mixed electromagnetic radiation-exciton states inside a semiconconductor microactivity are covered. The study of the characteristics of such states shows strong relations with the domain of cavity quantum electrodynamics and thus with the investigation of some fundamental theoretical concepts.
Applied Nanophotonics
Title | Applied Nanophotonics PDF eBook |
Author | Sergey V. Gaponenko |
Publisher | Cambridge University Press |
Pages | 453 |
Release | 2019 |
Genre | Science |
ISBN | 1107145503 |
An accessible yet rigorous introduction to nanophotonics, covering basic principles, technology, and applications in lighting, lasers, and photovoltaics. Providing a wealth of information on materials and devices, and over 150 color figures, it is the 'go-to' guide for students in electrical engineering taking courses in nanophotonics.