Local $L^p$-Brunn-Minkowski Inequalities for $p

Local $L^p$-Brunn-Minkowski Inequalities for $p
Title Local $L^p$-Brunn-Minkowski Inequalities for $p PDF eBook
Author Alexander V. Kolesnikov
Publisher American Mathematical Society
Pages 78
Release 2022-05-24
Genre Mathematics
ISBN 1470451603

Download Local $L^p$-Brunn-Minkowski Inequalities for $p Book in PDF, Epub and Kindle

View the abstract.

Maximal Functions, Littlewood–Paley Theory, Riesz Transforms and Atomic Decomposition in the Multi-Parameter Flag Setting

Maximal Functions, Littlewood–Paley Theory, Riesz Transforms and Atomic Decomposition in the Multi-Parameter Flag Setting
Title Maximal Functions, Littlewood–Paley Theory, Riesz Transforms and Atomic Decomposition in the Multi-Parameter Flag Setting PDF eBook
Author Yongsheng Han
Publisher American Mathematical Society
Pages 118
Release 2022-08-31
Genre Mathematics
ISBN 1470453452

Download Maximal Functions, Littlewood–Paley Theory, Riesz Transforms and Atomic Decomposition in the Multi-Parameter Flag Setting Book in PDF, Epub and Kindle

View the abstract.

Theory of Convex Bodies

Theory of Convex Bodies
Title Theory of Convex Bodies PDF eBook
Author Tommy Bonnesen
Publisher
Pages 192
Release 1987
Genre Mathematics
ISBN

Download Theory of Convex Bodies Book in PDF, Epub and Kindle

Convex Bodies: The Brunn–Minkowski Theory

Convex Bodies: The Brunn–Minkowski Theory
Title Convex Bodies: The Brunn–Minkowski Theory PDF eBook
Author Rolf Schneider
Publisher Cambridge University Press
Pages 759
Release 2014
Genre Mathematics
ISBN 1107601010

Download Convex Bodies: The Brunn–Minkowski Theory Book in PDF, Epub and Kindle

A complete presentation of a central part of convex geometry, from basics for beginners, to the exposition of current research.

Geometric Aspects of Functional Analysis

Geometric Aspects of Functional Analysis
Title Geometric Aspects of Functional Analysis PDF eBook
Author Ronen Eldan
Publisher Springer Nature
Pages 443
Release 2023-11-01
Genre Mathematics
ISBN 3031263006

Download Geometric Aspects of Functional Analysis Book in PDF, Epub and Kindle

This book reflects general trends in the study of geometric aspects of functional analysis, understood in a broad sense. A classical theme in the local theory of Banach spaces is the study of probability measures in high dimension and the concentration of measure phenomenon. Here this phenomenon is approached from different angles, including through analysis on the Hamming cube, and via quantitative estimates in the Central Limit Theorem under thin-shell and related assumptions. Classical convexity theory plays a central role in this volume, as well as the study of geometric inequalities. These inequalities, which are somewhat in spirit of the Brunn-Minkowski inequality, in turn shed light on convexity and on the geometry of Euclidean space. Probability measures with convexity or curvature properties, such as log-concave distributions, occupy an equally central role and arise in the study of Gaussian measures and non-trivial properties of the heat flow in Euclidean spaces. Also discussed are interactions of this circle of ideas with linear programming and sampling algorithms, including the solution of a question in online learning algorithms using a classical convexity construction from the 19th century.

Asymptotic Geometric Analysis, Part I

Asymptotic Geometric Analysis, Part I
Title Asymptotic Geometric Analysis, Part I PDF eBook
Author Shiri Artstein-Avidan
Publisher American Mathematical Soc.
Pages 473
Release 2015-06-18
Genre Mathematics
ISBN 1470421933

Download Asymptotic Geometric Analysis, Part I Book in PDF, Epub and Kindle

The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomenon", one of the most powerful tools of the theory, responsible for many counterintuitive results. A central theme in this book is the interaction of randomness and pattern. At first glance, life in high dimension seems to mean the existence of multiple "possibilities", so one may expect an increase in the diversity and complexity as dimension increases. However, the concentration of measure and effects caused by convexity show that this diversity is compensated and order and patterns are created for arbitrary convex bodies in the mixture caused by high dimensionality. The book is intended for graduate students and researchers who want to learn about this exciting subject. Among the topics covered in the book are convexity, concentration phenomena, covering numbers, Dvoretzky-type theorems, volume distribution in convex bodies, and more.

Fourier Analysis in Convex Geometry

Fourier Analysis in Convex Geometry
Title Fourier Analysis in Convex Geometry PDF eBook
Author Alexander Koldobsky
Publisher American Mathematical Soc.
Pages 178
Release 2014-11-12
Genre Mathematics
ISBN 1470419521

Download Fourier Analysis in Convex Geometry Book in PDF, Epub and Kindle

The study of the geometry of convex bodies based on information about sections and projections of these bodies has important applications in many areas of mathematics and science. In this book, a new Fourier analysis approach is discussed. The idea is to express certain geometric properties of bodies in terms of Fourier analysis and to use harmonic analysis methods to solve geometric problems. One of the results discussed in the book is Ball's theorem, establishing the exact upper bound for the -dimensional volume of hyperplane sections of the -dimensional unit cube (it is for each ). Another is the Busemann-Petty problem: if and are two convex origin-symmetric -dimensional bodies and the -dimensional volume of each central hyperplane section of is less than the -dimensional volume of the corresponding section of , is it true that the -dimensional volume of is less than the volume of ? (The answer is positive for and negative for .) The book is suitable for graduate students and researchers interested in geometry, harmonic and functional analysis, and probability. Prerequisites for reading this book include basic real, complex, and functional analysis.