Electrolytes for Lithium and Lithium-Ion Batteries
Title | Electrolytes for Lithium and Lithium-Ion Batteries PDF eBook |
Author | T. Richard Jow |
Publisher | Springer |
Pages | 488 |
Release | 2014-05-06 |
Genre | Technology & Engineering |
ISBN | 1493903020 |
Electrolytes for Lithium and Lithium-ion Batteries provides a comprehensive overview of the scientific understanding and technological development of electrolyte materials in the last several years. This book covers key electrolytes such as LiPF6 salt in mixed-carbonate solvents with additives for the state-of-the-art Li-ion batteries as well as new electrolyte materials developed recently that lay the foundation for future advances. This book also reviews the characterization of electrolyte materials for their transport properties, structures, phase relationships, stabilities, and impurities. The book discusses in-depth the electrode-electrolyte interactions and interphasial chemistries that are key for the successful use of the electrolyte in practical devices. The Quantum Mechanical and Molecular Dynamical calculations that has proved to be so powerful in understanding and predicating behavior and properties of materials is also reviewed in this book. Electrolytes for Lithium and Lithium-ion Batteries is ideal for electrochemists, engineers, researchers interested in energy science and technology, material scientists, and physicists working on energy.
Liquid Electrolyte Chemistry for Lithium Metal Batteries
Title | Liquid Electrolyte Chemistry for Lithium Metal Batteries PDF eBook |
Author | Jianmin Ma |
Publisher | John Wiley & Sons |
Pages | 299 |
Release | 2022-02-09 |
Genre | Science |
ISBN | 3527836381 |
Liquid Electrolyte Chemistry for Lithium Metal Batteries An of-the-moment treatment of liquid electrolytes used in lithium metal batteries Considered by many as the most-promising next-generation batteries, lithium metal batteries have grown in popularity due to their low potential and high capacity. Crucial to the development of this technology, electrolytes can provide efficient electrode electrolyte interfaces, assuring the interconversion of chemical and electrical energy. The quality of electrode electrolyte interphase, in turn, directly governs the performance of batteries. In Liquid Electrolyte Chemistry, provides a comprehensive look at the current understanding and status of research regarding liquid electrolytes for lithium metal batteries. Offering an introduction to lithium-based batteries from development history to their working mechanisms, the book further offers a glimpse at modification strategies of anode electrolyte interphases and cathode electrolytic interphases. More, by discussing the high-voltage electrolytes from their solvents—organic solvents and ionic liquids—to electrolyte additives, the text provides a thorough understanding on liquid electrolyte chemistry in the remit of lithium metal batteries. Liquid Electrolyte Chemistry for Lithium Metal Batteries readers will also find: A unique focus that reviews the development of liquid electrolytes for lithium metal batteries State-of-the-art progress and development of electrolytes for lithium metal batteries Consideration of safety, focusing the design principles of flame retardant and non-flammable electrolytes Principles and progress on low temperature and high temperature electrolytes Liquid Electrolyte Chemistry for Lithium Metal Batteries is a useful reference for electrochemists, solid state chemists, inorganic chemists, physical chemists, surface chemists, materials scientists, and the libraries that supply them.
Polymerized Ionic Liquids
Title | Polymerized Ionic Liquids PDF eBook |
Author | Ali Eftekhari |
Publisher | Royal Society of Chemistry |
Pages | 564 |
Release | 2017-09-18 |
Genre | Science |
ISBN | 1782629602 |
The series covers the fundamentals and applications of different smart material systems from renowned international experts.
Advances in Lithium-Ion Batteries
Title | Advances in Lithium-Ion Batteries PDF eBook |
Author | Walter van Schalkwijk |
Publisher | Springer Science & Business Media |
Pages | 514 |
Release | 2007-05-08 |
Genre | Science |
ISBN | 0306475081 |
In the decade since the introduction of the first commercial lithium-ion battery research and development on virtually every aspect of the chemistry and engineering of these systems has proceeded at unprecedented levels. This book is a snapshot of the state-of-the-art and where the work is going in the near future. The book is intended not only for researchers, but also for engineers and users of lithium-ion batteries which are found in virtually every type of portable electronic product.
Materials for Lithium-Ion Batteries
Title | Materials for Lithium-Ion Batteries PDF eBook |
Author | Christian Julien |
Publisher | Springer Science & Business Media |
Pages | 658 |
Release | 2000-10-31 |
Genre | Technology & Engineering |
ISBN | 9780792366508 |
A lithium-ion battery comprises essentially three components: two intercalation compounds as positive and negative electrodes, separated by an ionic-electronic electrolyte. Each component is discussed in sufficient detail to give the practising engineer an understanding of the subject, providing guidance on the selection of suitable materials in actual applications. Each topic covered is written by an expert, reflecting many years of experience in research and applications. Each topic is provided with an extensive list of references, allowing easy access to further information. Readership: Research students and engineers seeking an expert review. Graduate courses in electrical drives can also be designed around the book by selecting sections for discussion. The coverage and treatment make the book indispensable for the lithium battery community.
Lithium Metal Anodes and Rechargeable Lithium Metal Batteries
Title | Lithium Metal Anodes and Rechargeable Lithium Metal Batteries PDF eBook |
Author | Ji-Guang Zhang |
Publisher | Springer |
Pages | 206 |
Release | 2016-10-06 |
Genre | Technology & Engineering |
ISBN | 3319440543 |
This book provides comprehensive coverage of Lithium (Li) metal anodes for rechargeable batteries. Li is an ideal anode material for rechargeable batteries due to its extremely high theoretical specific capacity (3860 mAh g-1), low density (0.59 g cm-3), and the lowest negative electrochemical potential (−3.040 V vs. standard hydrogenelectrodes). Unfortunately, uncontrollable dendritic Li growth and limited Coulombic efficiency during Li deposition/stripping inherent in these batteries have prevented their practical applications over the past 40 years. With the emergence of post Liion batteries, safe and efficient operation of Li metal anodes has become an enabling technology which may determine the fate of several promising candidates for the next generation energy storage systems, including rechargeable Li-air batteries, Li-S batteries, and Li metal batteries which utilize intercalation compounds as cathodes. In this work, various factors that affect the morphology and Coulombic efficiency of Li anodes are analyzed. The authors also present the technologies utilized to characterize the morphology of Li deposition and the results obtained by modeling of Li dendrite growth. Finally, recent developments, especially the new approaches that enable safe and efficient operation of Li metal anodes at high current densities are reviewed. The urgent need and perspectives in this field are also discussed. The fundamental understanding and approaches presented in this work will be critical for the applicationof Li metal anodes. The general principles and approaches can also be used in other metal electrodes and general electrochemical deposition of metal films.
Fast Ion Transport in Solids
Title | Fast Ion Transport in Solids PDF eBook |
Author | B. Scrosati |
Publisher | Springer Science & Business Media |
Pages | 375 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 9401119163 |
The main motivation for the organization of the Advanced Research Workshop in Belgirate was the promotion of discussions on the most recent issues and the future perspectives in the field of Solid State lonics. The location was chosen on purpose since Belgirate was the place were twenty years ago, also then under the sponsorship of NATO, the very first international meeting on this important and interdisciplinary field took place. That meeting was named "Fast Ion Transport in Solids" and gathered virtually everybody at that time having been active in any aspect of motion of ions in solids. The original Belgirate Meeting made for the first time visible the technological potential related to the phenomenon of the fast ionic transport in solids and, accordingly, the field was given the name "Solid State lonics". This field is now expanded to cover a wide range of technologies which includes chemical sensors for environmental and process control, electrochromic windows, mirrors and displays, fuel cells, high performance rechargeable batteries for stationary applications and electrotraction, chemotronics, semiconductor ionics, water electrolysis cells for hydrogen economy and other applications. The main idea for holding an anniversary meeting was that of discussing the most recent issues and the future perspectives of Solid State lonics just twenty years after it has started at the same location on the lake Maggiore in North Italy.