Linear Operator Equations
Title | Linear Operator Equations PDF eBook |
Author | M. Thamban Nair |
Publisher | World Scientific |
Pages | 264 |
Release | 2009 |
Genre | Mathematics |
ISBN | 9812835652 |
Many problems in science and engineering have their mathematical formulation as an operator equation Tx=y, where T is a linear or nonlinear operator between certain function spaces. In practice, such equations are solved approximately using numerical methods, as their exact solution may not often be possible or may not be worth looking for due to physical constraints. In such situations, it is desirable to know how the so-called approximate solution approximates the exact solution, and what the error involved in such procedures would be. This book is concerned with the investigation of the above theoretical issues related to approximately solving linear operator equations. The main tools used for this purpose are basic results from functional analysis and some rudimentary ideas from numerical analysis. To make this book more accessible to readers, no in-depth knowledge on these disciplines is assumed for reading this book.
Linear Operator Equations: Approximation And Regularization
Title | Linear Operator Equations: Approximation And Regularization PDF eBook |
Author | M Thamban Nair |
Publisher | World Scientific |
Pages | 264 |
Release | 2009-05-05 |
Genre | Mathematics |
ISBN | 981446967X |
Many problems in science and engineering have their mathematical formulation as an operator equation Tx=y, where T is a linear or nonlinear operator between certain function spaces. In practice, such equations are solved approximately using numerical methods, as their exact solution may not often be possible or may not be worth looking for due to physical constraints. In such situations, it is desirable to know how the so-called approximate solution approximates the exact solution, and what the error involved in such procedures would be.This book is concerned with the investigation of the above theoretical issues related to approximately solving linear operator equations. The main tools used for this purpose are basic results from functional analysis and some rudimentary ideas from numerical analysis. To make this book more accessible to readers, no in-depth knowledge on these disciplines is assumed for reading this book.
Regularization Algorithms for Ill-Posed Problems
Title | Regularization Algorithms for Ill-Posed Problems PDF eBook |
Author | Anatoly B. Bakushinsky |
Publisher | Walter de Gruyter GmbH & Co KG |
Pages | 447 |
Release | 2018-02-05 |
Genre | Mathematics |
ISBN | 3110556383 |
This specialized and authoritative book contains an overview of modern approaches to constructing approximations to solutions of ill-posed operator equations, both linear and nonlinear. These approximation schemes form a basis for implementable numerical algorithms for the stable solution of operator equations arising in contemporary mathematical modeling, and in particular when solving inverse problems of mathematical physics. The book presents in detail stable solution methods for ill-posed problems using the methodology of iterative regularization of classical iterative schemes and the techniques of finite dimensional and finite difference approximations of the problems under study. Special attention is paid to ill-posed Cauchy problems for linear operator differential equations and to ill-posed variational inequalities and optimization problems. The readers are expected to have basic knowledge in functional analysis and differential equations. The book will be of interest to applied mathematicians and specialists in mathematical modeling and inverse problems, and also to advanced students in these fields. Contents Introduction Regularization Methods For Linear Equations Finite Difference Methods Iterative Regularization Methods Finite-Dimensional Iterative Processes Variational Inequalities and Optimization Problems
Handbook of Mathematical Geodesy
Title | Handbook of Mathematical Geodesy PDF eBook |
Author | Willi Freeden |
Publisher | Birkhäuser |
Pages | 938 |
Release | 2018-06-11 |
Genre | Mathematics |
ISBN | 3319571818 |
Written by leading experts, this book provides a clear and comprehensive survey of the “status quo” of the interrelating process and cross-fertilization of structures and methods in mathematical geodesy. Starting with a foundation of functional analysis, potential theory, constructive approximation, special function theory, and inverse problems, readers are subsequently introduced to today’s least squares approximation, spherical harmonics reflected spline and wavelet concepts, boundary value problems, Runge-Walsh framework, geodetic observables, geoidal modeling, ill-posed problems and regularizations, inverse gravimetry, and satellite gravity gradiometry. All chapters are self-contained and can be studied individually, making the book an ideal resource for both graduate students and active researchers who want to acquaint themselves with the mathematical aspects of modern geodesy.
Inverse Acoustic and Electromagnetic Scattering Theory
Title | Inverse Acoustic and Electromagnetic Scattering Theory PDF eBook |
Author | David Colton |
Publisher | Springer Science & Business Media |
Pages | 419 |
Release | 2012-10-26 |
Genre | Mathematics |
ISBN | 1461449413 |
The inverse scattering problem is central to many areas of science and technology such as radar and sonar, medical imaging, geophysical exploration and nondestructive testing. This book is devoted to the mathematical and numerical analysis of the inverse scattering problem for acoustic and electromagnetic waves. In this third edition, new sections have been added on the linear sampling and factorization methods for solving the inverse scattering problem as well as expanded treatments of iteration methods and uniqueness theorems for the inverse obstacle problem. These additions have in turn required an expanded presentation of both transmission eigenvalues and boundary integral equations in Sobolev spaces. As in the previous editions, emphasis has been given to simplicity over generality thus providing the reader with an accessible introduction to the field of inverse scattering theory. Review of earlier editions: “Colton and Kress have written a scholarly, state of the art account of their view of direct and inverse scattering. The book is a pleasure to read as a graduate text or to dip into at leisure. It suggests a number of open problems and will be a source of inspiration for many years to come.” SIAM Review, September 1994 “This book should be on the desk of any researcher, any student, any teacher interested in scattering theory.” Mathematical Intelligencer, June 1994
Semigroups, Algebras and Operator Theory
Title | Semigroups, Algebras and Operator Theory PDF eBook |
Author | P G Romeo |
Publisher | Springer |
Pages | 219 |
Release | 2015-07-06 |
Genre | Mathematics |
ISBN | 8132224884 |
This book discusses recent developments in semigroup theory and its applications in areas such as operator algebras, operator approximations and category theory. All contributing authors are eminent researchers in their respective fields, from across the world. Their papers, presented at the 2014 International Conference on Semigroups, Algebras and Operator Theory in Cochin, India, focus on recent developments in semigroup theory and operator algebras. They highlight current research activities on the structure theory of semigroups as well as the role of semigroup theoretic approaches to other areas such as rings and algebras. The deliberations and discussions at the conference point to future research directions in these areas. This book presents 16 unpublished, high-quality and peer-reviewed research papers on areas such as structure theory of semigroups, decidability vs. undecidability of word problems, regular von Neumann algebras, operator theory and operator approximations. Interested researchers will find several avenues for exploring the connections between semigroup theory and the theory of operator algebras.
Spectral Approximation of Linear Operators
Title | Spectral Approximation of Linear Operators PDF eBook |
Author | Francoise Chatelin |
Publisher | SIAM |
Pages | 482 |
Release | 2011-05-26 |
Genre | Mathematics |
ISBN | 0898719992 |
Originally published: New York: Academic Press, 1983.