Linear Discrete Parabolic Problems

Linear Discrete Parabolic Problems
Title Linear Discrete Parabolic Problems PDF eBook
Author Nikolai Bakaev
Publisher Elsevier
Pages 303
Release 2005-12-02
Genre Mathematics
ISBN 0080462081

Download Linear Discrete Parabolic Problems Book in PDF, Epub and Kindle

This volume introduces a unified, self-contained study of linear discrete parabolic problems through reducing the starting discrete problem to the Cauchy problem for an evolution equation in discrete time. Accessible to beginning graduate students, the book contains a general stability theory of discrete evolution equations in Banach space and gives applications of this theory to the analysis of various classes of modern discretization methods, among others, Runge-Kutta and linear multistep methods as well as operator splitting methods. Key features: * Presents a unified approach to examining discretization methods for parabolic equations. * Highlights a stability theory of discrete evolution equations (discrete semigroups) in Banach space. * Deals with both autonomous and non-autonomous equations as well as with equations with memory. * Offers a series of numerous well-posedness and convergence results for various discretization methods as applied to abstract parabolic equations; among others, Runge-Kutta and linear multistep methods as well as certain operator splitting methods. * Provides comments of results and historical remarks after each chapter.· Presents a unified approach to examining discretization methods for parabolic equations.· Highlights a stability theory of discrete evolution equations (discrete semigroups) in Banach space.· Deals with both autonomous and non-autonomous equations as well as with equations with memory.· Offers a series of numerous well-posedness and convergence results for various discretization methods as applied to abstract parabolic equations; among others, Runge-Kutta and linear multistep methods as well as certain operator splitting methods as well as certain operator splitting methods are studied in detail.·Provides comments of results and historical remarks after each chapter.

Galerkin Finite Element Methods for Parabolic Problems

Galerkin Finite Element Methods for Parabolic Problems
Title Galerkin Finite Element Methods for Parabolic Problems PDF eBook
Author Vidar Thomee
Publisher Springer Science & Business Media
Pages 310
Release 2013-04-17
Genre Mathematics
ISBN 3662033593

Download Galerkin Finite Element Methods for Parabolic Problems Book in PDF, Epub and Kindle

My purpose in this monograph is to present an essentially self-contained account of the mathematical theory of Galerkin finite element methods as applied to parabolic partial differential equations. The emphases and selection of topics reflects my own involvement in the field over the past 25 years, and my ambition has been to stress ideas and methods of analysis rather than to describe the most general and farreaching results possible. Since the formulation and analysis of Galerkin finite element methods for parabolic problems are generally based on ideas and results from the corresponding theory for stationary elliptic problems, such material is often included in the presentation. The basis of this work is my earlier text entitled Galerkin Finite Element Methods for Parabolic Problems, Springer Lecture Notes in Mathematics, No. 1054, from 1984. This has been out of print for several years, and I have felt a need and been encouraged by colleagues and friends to publish an updated version. In doing so I have included most of the contents of the 14 chapters of the earlier work in an updated and revised form, and added four new chapters, on semigroup methods, on multistep schemes, on incomplete iterative solution of the linear algebraic systems at the time levels, and on semilinear equations. The old chapters on fully discrete methods have been reworked by first treating the time discretization of an abstract differential equation in a Hilbert space setting, and the chapter on the discontinuous Galerkin method has been completely rewritten.

Galerkin Finite Element Methods for Parabolic Problems

Galerkin Finite Element Methods for Parabolic Problems
Title Galerkin Finite Element Methods for Parabolic Problems PDF eBook
Author Vidar Thomée
Publisher Springer Science & Business Media
Pages 320
Release 2010
Genre
ISBN 9783540632368

Download Galerkin Finite Element Methods for Parabolic Problems Book in PDF, Epub and Kindle

Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations

Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations
Title Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations PDF eBook
Author Beatrice Riviere
Publisher SIAM
Pages 201
Release 2008-12-18
Genre Mathematics
ISBN 089871656X

Download Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations Book in PDF, Epub and Kindle

Focuses on three primal DG methods, covering both theory and computation, and providing the basic tools for analysis.

Linear and Nonlinear Parabolic Complex Equations

Linear and Nonlinear Parabolic Complex Equations
Title Linear and Nonlinear Parabolic Complex Equations PDF eBook
Author Guo Chun Wen
Publisher World Scientific
Pages 260
Release 1999
Genre Mathematics
ISBN 9789810238568

Download Linear and Nonlinear Parabolic Complex Equations Book in PDF, Epub and Kindle

"This is a very interesting book written by a well-known expert on complex methods in partial differential equations. It contains many recent results, many of them published for the first time, some published originally in Chinese".Mathematical Reviews

Superlinear Parabolic Problems

Superlinear Parabolic Problems
Title Superlinear Parabolic Problems PDF eBook
Author Pavol Quittner
Publisher Springer Science & Business Media
Pages 593
Release 2007-12-16
Genre Mathematics
ISBN 3764384425

Download Superlinear Parabolic Problems Book in PDF, Epub and Kindle

This book is devoted to the qualitative study of solutions of superlinear elliptic and parabolic partial differential equations and systems. This class of problems contains, in particular, a number of reaction-diffusion systems which arise in various mathematical models, especially in chemistry, physics and biology. The book is self-contained and up-to-date, taking special care on the didactical preparation of the material. It is devoted to problems that are intensively studied but have not been treated thus far in depth in the book literature.

Superlinear Parabolic Problems

Superlinear Parabolic Problems
Title Superlinear Parabolic Problems PDF eBook
Author Prof. Dr. Pavol Quittner
Publisher Springer
Pages 738
Release 2019-06-13
Genre Mathematics
ISBN 3030182223

Download Superlinear Parabolic Problems Book in PDF, Epub and Kindle

This book is devoted to the qualitative study of solutions of superlinear elliptic and parabolic partial differential equations and systems. This class of problems contains, in particular, a number of reaction-diffusion systems which arise in various mathematical models, especially in chemistry, physics and biology. The first two chapters introduce to the field and enable the reader to get acquainted with the main ideas by studying simple model problems, respectively of elliptic and parabolic type. The subsequent three chapters are devoted to problems with more complex structure; namely, elliptic and parabolic systems, equations with gradient depending nonlinearities, and nonlocal equations. They include many developments which reflect several aspects of current research. Although the techniques introduced in the first two chapters provide efficient tools to attack some aspects of these problems, they often display new phenomena and specifically different behaviors, whose study requires new ideas. Many open problems are mentioned and commented. The book is self-contained and up-to-date, it has a high didactic quality. It is devoted to problems that are intensively studied but have not been treated so far in depth in the book literature. The intended audience includes graduate and postgraduate students and researchers working in the field of partial differential equations and applied mathematics. The first edition of this book has become one of the standard references in the field. This second edition provides a revised text and contains a number of updates reflecting significant recent advances that have appeared in this growing field since the first edition.