Linear Control Systems Engineering
Title | Linear Control Systems Engineering PDF eBook |
Author | Morris R. Driels |
Publisher | McGraw-Hill Science, Engineering & Mathematics |
Pages | 0 |
Release | 1996 |
Genre | Automatic control |
ISBN | 9780070178243 |
Linear Control Systems
Title | Linear Control Systems PDF eBook |
Author | Branislav Kisacanin |
Publisher | Springer Science & Business Media |
Pages | 385 |
Release | 2012-12-06 |
Genre | Technology & Engineering |
ISBN | 1461505534 |
Anyone seeking a gentle introduction to the methods of modern control theory and engineering, written at the level of a first-year graduate course, should consider this book seriously. It contains: A generous historical overview of automatic control, from Ancient Greece to the 1970s, when this discipline matured into an essential field for electrical, mechanical, aerospace, chemical, and biomedical engineers, as well as mathematicians, and more recently, computer scientists; A balanced presentation of the relevant theory: the main state-space methods for description, analysis, and design of linear control systems are derived, without overwhelming theoretical arguments; Over 250 solved and exercise problems for both continuous- and discrete-time systems, often including MATLAB simulations; and Appendixes on MATLAB, advanced matrix theory, and the history of mathematical tools such as differential calculus, transform methods, and linear algebra. Another noteworthy feature is the frequent use of an inverted pendulum on a cart to illustrate the most important concepts of automatic control, such as: Linearization and discretization; Stability, controllability, and observability; State feedback, controller design, and optimal control; and Observer design, reduced order observers, and Kalman filtering. Most of the problems are given with solutions or MATLAB simulations. Whether the book is used as a textbook or as a self-study guide, the knowledge gained from it will be an excellent platform for students and practising engineers to explore further the recent developments and applications of control theory.
Introduction to Linear Control Systems
Title | Introduction to Linear Control Systems PDF eBook |
Author | Yazdan Bavafa-Toosi |
Publisher | Academic Press |
Pages | 1135 |
Release | 2017-09-19 |
Genre | Technology & Engineering |
ISBN | 012812749X |
Introduction to Linear Control Systems is designed as a standard introduction to linear control systems for all those who one way or another deal with control systems. It can be used as a comprehensive up-to-date textbook for a one-semester 3-credit undergraduate course on linear control systems as the first course on this topic at university. This includes the faculties of electrical engineering, mechanical engineering, aerospace engineering, chemical and petroleum engineering, industrial engineering, civil engineering, bio-engineering, economics, mathematics, physics, management and social sciences, etc. The book covers foundations of linear control systems, their raison detre, different types, modelling, representations, computations, stability concepts, tools for time-domain and frequency-domain analysis and synthesis, and fundamental limitations, with an emphasis on frequency-domain methods. Every chapter includes a part on further readings where more advanced topics and pertinent references are introduced for further studies. The presentation is theoretically firm, contemporary, and self-contained. Appendices cover Laplace transform and differential equations, dynamics, MATLAB and SIMULINK, treatise on stability concepts and tools, treatise on Routh-Hurwitz method, random optimization techniques as well as convex and non-convex problems, and sample midterm and endterm exams. The book is divided to the sequel 3 parts plus appendices. PART I: In this part of the book, chapters 1-5, we present foundations of linear control systems. This includes: the introduction to control systems, their raison detre, their different types, modelling of control systems, different methods for their representation and fundamental computations, basic stability concepts and tools for both analysis and design, basic time domain analysis and design details, and the root locus as a stability analysis and synthesis tool. PART II: In this part of the book, Chapters 6-9, we present what is generally referred to as the frequency domain methods. This refers to the experiment of applying a sinusoidal input to the system and studying its output. There are basically three different methods for representation and studying of the data of the aforementioned frequency response experiment: these are the Nyquist plot, the Bode diagram, and the Krohn-Manger-Nichols chart. We study these methods in details. We learn that the output is also a sinusoid with the same frequency but generally with different phase and magnitude. By dividing the output by the input we obtain the so-called sinusoidal or frequency transfer function of the system which is the same as the transfer function when the Laplace variable s is substituted with . Finally we use the Bode diagram for the design process. PART III: In this part, Chapter 10, we introduce some miscellaneous advanced topics under the theme fundamental limitations which should be included in this undergraduate course at least in an introductory level. We make bridges between some seemingly disparate aspects of a control system and theoretically complement the previously studied subjects. Appendices: The book contains seven appendices. Appendix A is on the Laplace transform and differential equations. Appendix B is an introduction to dynamics. Appendix C is an introduction to MATLAB, including SIMULINK. Appendix D is a survey on stability concepts and tools. A glossary and road map of the available stability concepts and tests is provided which is missing even in the research literature. Appendix E is a survey on the Routh-Hurwitz method, also missing in the literature. Appendix F is an introduction to random optimization techniques and convex and non-convex problems. Finally, appendix G presents sample midterm and endterm exams, which are class-tested several times.
Fundamentals of Linear Control
Title | Fundamentals of Linear Control PDF eBook |
Author | Maurício C. de Oliveira |
Publisher | Cambridge University Press |
Pages | 317 |
Release | 2017-05-04 |
Genre | Technology & Engineering |
ISBN | 1316949907 |
Taking a different approach from standard thousand-page reference-style control textbooks, Fundamentals of Linear Control provides a concise yet comprehensive introduction to the analysis and design of feedback control systems in fewer than 400 pages. The text focuses on classical methods for dynamic linear systems in the frequency domain. The treatment is, however, modern and the reader is kept aware of contemporary tools and techniques, such as state space methods and robust and nonlinear control. Featuring fully worked design examples, richly illustrated chapters, and an extensive set of homework problems and examples spanning across the text for gradual challenge and perspective, this textbook is an excellent choice for senior-level courses in systems and control or as a complementary reference in introductory graduate level courses. The text is designed to appeal to a broad audience of engineers and scientists interested in learning the main ideas behind feedback control theory.
Linear State-Space Control Systems
Title | Linear State-Space Control Systems PDF eBook |
Author | Robert L. Williams, II |
Publisher | John Wiley & Sons |
Pages | 485 |
Release | 2007-02-09 |
Genre | Technology & Engineering |
ISBN | 0471735558 |
The book blends readability and accessibility common to undergraduate control systems texts with the mathematical rigor necessary to form a solid theoretical foundation. Appendices cover linear algebra and provide a Matlab overivew and files. The reviewers pointed out that this is an ambitious project but one that will pay off because of the lack of good up-to-date textbooks in the area.
Quantitative Feedback Design of Linear and Nonlinear Control Systems
Title | Quantitative Feedback Design of Linear and Nonlinear Control Systems PDF eBook |
Author | Oded Yaniv |
Publisher | Springer Science & Business Media |
Pages | 382 |
Release | 2013-04-17 |
Genre | Technology & Engineering |
ISBN | 147576331X |
Quantitative Feedback Design of Linear and Nonlinear Control Systems is a self-contained book dealing with the theory and practice of Quantitative Feedback Theory (QFT). The author presents feedback synthesis techniques for single-input single-output, multi-input multi-output linear time-invariant and nonlinear plants based on the QFT method. Included are design details and graphs which do not appear in the literature, which will enable engineers and researchers to understand QFT in greater depth. Engineers will be able to apply QFT and the design techniques to many applications, such as flight and chemical plant control, robotics, space, vehicle and military industries, and numerous other uses. All of the examples were implemented using Matlab® Version 5.3; the script file can be found at the author's Web site. QFT results in efficient designs because it synthesizes a controller for the exact amount of plant uncertainty, disturbances and required specifications. Quantitative Feedback Design of Linear and Nonlinear Control Systems is a pioneering work that illuminates QFT, making the theory - and practice - come alive.
Linear Multivariable Control Systems
Title | Linear Multivariable Control Systems PDF eBook |
Author | Shankar P. Bhattacharyya |
Publisher | Cambridge University Press |
Pages | 697 |
Release | 2022-01-13 |
Genre | Mathematics |
ISBN | 1108841686 |
A graduate text providing broad coverage of linear multivariable control systems, including several new results and recent approaches.