Linear Chaos

Linear Chaos
Title Linear Chaos PDF eBook
Author Karl-G. Grosse-Erdmann
Publisher Springer Science & Business Media
Pages 391
Release 2011-08-24
Genre Mathematics
ISBN 1447121708

Download Linear Chaos Book in PDF, Epub and Kindle

It is commonly believed that chaos is linked to non-linearity, however many (even quite natural) linear dynamical systems exhibit chaotic behavior. The study of these systems is a young and remarkably active field of research, which has seen many landmark results over the past two decades. Linear dynamics lies at the crossroads of several areas of mathematics including operator theory, complex analysis, ergodic theory and partial differential equations. At the same time its basic ideas can be easily understood by a wide audience. Written by two renowned specialists, Linear Chaos provides a welcome introduction to this theory. Split into two parts, part I presents a self-contained introduction to the dynamics of linear operators, while part II covers selected, largely independent topics from linear dynamics. More than 350 exercises and many illustrations are included, and each chapter contains a further ‘Sources and Comments’ section. The only prerequisites are a familiarity with metric spaces, the basic theory of Hilbert and Banach spaces and fundamentals of complex analysis. More advanced tools, only needed occasionally, are provided in two appendices. A self-contained exposition, this book will be suitable for self-study and will appeal to advanced undergraduate or beginning graduate students. It will also be of use to researchers in other areas of mathematics such as partial differential equations, dynamical systems and ergodic theory.

Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos
Title Nonlinear Dynamics and Chaos PDF eBook
Author Steven H. Strogatz
Publisher CRC Press
Pages 532
Release 2018-05-04
Genre Mathematics
ISBN 0429961111

Download Nonlinear Dynamics and Chaos Book in PDF, Epub and Kindle

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

Differential Equations, Dynamical Systems, and an Introduction to Chaos

Differential Equations, Dynamical Systems, and an Introduction to Chaos
Title Differential Equations, Dynamical Systems, and an Introduction to Chaos PDF eBook
Author Morris W. Hirsch
Publisher Academic Press
Pages 433
Release 2004
Genre Business & Economics
ISBN 0123497035

Download Differential Equations, Dynamical Systems, and an Introduction to Chaos Book in PDF, Epub and Kindle

Thirty years in the making, this revised text by three of the world's leading mathematicians covers the dynamical aspects of ordinary differential equations. it explores the relations between dynamical systems and certain fields outside pure mathematics, and has become the standard textbook for graduate courses in this area. The Second Edition now brings students to the brink of contemporary research, starting from a background that includes only calculus and elementary linear algebra. The authors are tops in the field of advanced mathematics, including Steve Smale who is a recipient of.

Complex Nonlinearity

Complex Nonlinearity
Title Complex Nonlinearity PDF eBook
Author Vladimir G. Ivancevic
Publisher Springer Science & Business Media
Pages 855
Release 2008-05-31
Genre Science
ISBN 3540793577

Download Complex Nonlinearity Book in PDF, Epub and Kindle

Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity – chaos – corresponds to the topology change of this curved geometrical stage, usually called configuration manifold. Chapter 3 elaborates on geometry and topology change in relation with complex nonlinearity and chaos. Chapter 4 develops general nonlinear dynamics, continuous and discrete, deterministic and stochastic, in the unique form of path integrals and their action-amplitude formalism. This most natural framework for representing both phase transitions and topology change starts with Feynman’s sum over histories, to be quickly generalized into the sum over geometries and topologies. The last Chapter puts all the previously developed techniques together and presents the unified form of complex nonlinearity. Here we have chaos, phase transitions, geometrical dynamics and topology change, all working together in the form of path integrals. The objective of this book is to provide a serious reader with a serious scientific tool that will enable them to actually perform a competitive research in modern complex nonlinearity. It includes a comprehensive bibliography on the subject and a detailed index. Target readership includes all researchers and students of complex nonlinear systems (in physics, mathematics, engineering, chemistry, biology, psychology, sociology, economics, medicine, etc.), working both in industry/clinics and academia.

Chaos

Chaos
Title Chaos PDF eBook
Author Richard Kautz
Publisher Oxford University Press
Pages 384
Release 2011
Genre Mathematics
ISBN 0199594570

Download Chaos Book in PDF, Epub and Kindle

One CD-ROM disc in pocket.

Clinical Chaos

Clinical Chaos
Title Clinical Chaos PDF eBook
Author Linda Chamberlain
Publisher Routledge
Pages 242
Release 2016-01-28
Genre Psychology
ISBN 1317714776

Download Clinical Chaos Book in PDF, Epub and Kindle

Psychology and the social sciences are in need of a new foundation, one that provides a better model for understanding complex behavior. Chaos theory and its newest permutation, complexity theory, offers an innovative, exciting and potentially revolutionary leap forward in the evolution of scientific thought. In Clinical Chaos, therapists and theoreticians from various areas in the social sciences will explore the relevance and implications for non-linear dynamics in observing, explaining, and understanding human behavior. At last, the scientific search can again encompass surprise, transformation, unpredictability, and pattern. This book is intended to introduce social scientists to chaos through paths that are already familiar. By linking chaos theory with existing psychological theories and established areas of clinical pursuit, Clinical Chaos emphasizes the relevance of this new science in providing a more flexible useful model for complexities of life.

Chaos

Chaos
Title Chaos PDF eBook
Author Kathleen Alligood
Publisher Springer
Pages 620
Release 2012-12-06
Genre Mathematics
ISBN 3642592813

Download Chaos Book in PDF, Epub and Kindle

BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.