Linear and Nonlinear Programming with Maple

Linear and Nonlinear Programming with Maple
Title Linear and Nonlinear Programming with Maple PDF eBook
Author Paul E. Fishback
Publisher CRC Press
Pages 410
Release 2009-12-09
Genre Business & Economics
ISBN 1420090658

Download Linear and Nonlinear Programming with Maple Book in PDF, Epub and Kindle

Helps Students Understand Mathematical Programming Principles and Solve Real-World Applications Supplies enough mathematical rigor yet accessible enough for undergraduates Integrating a hands-on learning approach, a strong linear algebra focus, MapleTM software, and real-world applications, Linear and Nonlinear Programming with MapleTM: An Interactive, Applications-Based Approach introduces undergraduate students to the mathematical concepts and principles underlying linear and nonlinear programming. This text fills the gap between management science books lacking mathematical detail and rigor and graduate-level books on mathematical programming. Essential linear algebra tools Throughout the text, topics from a first linear algebra course, such as the invertible matrix theorem, linear independence, transpose properties, and eigenvalues, play a prominent role in the discussion. The book emphasizes partitioned matrices and uses them to describe the simplex algorithm in terms of matrix multiplication. This perspective leads to streamlined approaches for constructing the revised simplex method, developing duality theory, and approaching the process of sensitivity analysis. The book also discusses some intermediate linear algebra topics, including the spectral theorem and matrix norms. Maple enhances conceptual understanding and helps tackle problems Assuming no prior experience with Maple, the author provides a sufficient amount of instruction for students unfamiliar with the software. He also includes a summary of Maple commands as well as Maple worksheets in the text and online. By using Maple’s symbolic computing components, numeric capabilities, graphical versatility, and intuitive programming structures, students will acquire a deep conceptual understanding of major mathematical programming principles, along with the ability to solve moderately sized real-world applications. Hands-on activities that engage students Throughout the book, student understanding is evaluated through "waypoints" that involve basic computations or short questions. Some problems require paper-and-pencil calculations; others involve more lengthy calculations better suited for performing with Maple. Many sections contain exercises that are conceptual in nature and/or involve writing proofs. In addition, six substantial projects in one of the appendices enable students to solve challenging real-world problems.

Linear and Nonlinear Programming

Linear and Nonlinear Programming
Title Linear and Nonlinear Programming PDF eBook
Author Stephen G. Nash
Publisher McGraw-Hill Science, Engineering & Mathematics
Pages 744
Release 1996
Genre Computers
ISBN

Download Linear and Nonlinear Programming Book in PDF, Epub and Kindle

A complete and unified introduction to applications, theory and algorithms which contains modelling examples, computer based exercises and material on interior point methods and trust-region methods. Gives both numerical methods for optimisation and optomisation problems.

Solving Nonlinear Partial Differential Equations with Maple and Mathematica

Solving Nonlinear Partial Differential Equations with Maple and Mathematica
Title Solving Nonlinear Partial Differential Equations with Maple and Mathematica PDF eBook
Author Inna Shingareva
Publisher Springer Science & Business Media
Pages 372
Release 2011-07-24
Genre Mathematics
ISBN 370910517X

Download Solving Nonlinear Partial Differential Equations with Maple and Mathematica Book in PDF, Epub and Kindle

The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).

Interactive Operations Research with Maple

Interactive Operations Research with Maple
Title Interactive Operations Research with Maple PDF eBook
Author Mahmut Parlar
Publisher Springer Science & Business Media
Pages 478
Release 2012-12-06
Genre Business & Economics
ISBN 1461213568

Download Interactive Operations Research with Maple Book in PDF, Epub and Kindle

Interactive Operations Research with Maple: Methods and Models has two ob jectives: to provide an accelerated introduction to the computer algebra system Maple and, more importantly, to demonstrate Maple's usefulness in modeling and solving a wide range of operations research (OR) problems. This book is written in a format that makes it suitable for a one-semester course in operations research, management science, or quantitative methods. A nwnber of students in the departments of operations research, management science, oper ations management, industrial and systems engineering, applied mathematics and advanced MBA students who are specializing in quantitative methods or opera tions management will find this text useful. Experienced researchers and practi tioners of operations research who wish to acquire a quick overview of how Maple can be useful in solving OR problems will find this an excellent reference. Maple's mathematical knowledge base now includes calculus, linear algebra, ordinary and partial differential equations, nwnber theory, logic, graph theory, combinatorics, statistics and transform methods. Although Maple's main strength lies in its ability to perform symbolic manipulations, it also has a substantial knowledge of a large nwnber of nwnerical methods and can plot many different types of attractive-looking two-dimensional and three-dimensional graphs. After almost two decades of continuous improvement of its mathematical capabilities, Maple can now boast a user base of more than 300,000 academics, researchers and students in different areas of mathematics, science and engineering.

Nonlinear Physics with Maple for Scientists and Engineers

Nonlinear Physics with Maple for Scientists and Engineers
Title Nonlinear Physics with Maple for Scientists and Engineers PDF eBook
Author Richard Enns
Publisher Springer Science & Business Media
Pages 400
Release 2013-11-27
Genre Science
ISBN 1468400320

Download Nonlinear Physics with Maple for Scientists and Engineers Book in PDF, Epub and Kindle

Philosophy of the Text This text has been designed to be an introductory survey of the basic concepts and applied mathematical methods of nonlinear science. Students in engineer ing, physics, chemistry, mathematics, computing science, and biology should be able to successfully use this text. In an effort to provide the students with a cutting edge approach to one of the most dynamic, often subtle, complex, and still rapidly evolving, areas of modern research-nonlinear physics-we have made extensive use of the symbolic, numeric, and plotting capabilities of Maple V Release 4 applied to examples from these disciplines. No prior knowledge of Maple or computer programming is assumed, the reader being gently introduced to Maple as an auxiliary tool as the concepts of nonlinear science are developed. The diskette which accompanies the text gives a wide variety of illustrative nonlinear examples solved with Maple. An accompanying laboratory manual of experimental activities keyed to the text allows the student the option of "hands on" experience in exploring nonlinear phenomena in the REAL world. Although the experiments are easy to perform, they give rise to experimental and theoretical complexities which are not to be underestimated. The Level of the Text The essential prerequisites for the first eight chapters of this text would nor mally be one semester of ordinary differential equations and an intermediate course in classical mechanics.

Principles of Linear Algebra With Maple

Principles of Linear Algebra With Maple
Title Principles of Linear Algebra With Maple PDF eBook
Author Kenneth M. Shiskowski
Publisher Wiley
Pages 0
Release 2010-09-28
Genre Mathematics
ISBN 9780470637593

Download Principles of Linear Algebra With Maple Book in PDF, Epub and Kindle

An accessible introduction to the theoretical and computational aspects of linear algebra using MapleTM Many topics in linear algebra can be computationally intensive, and software programs often serve as important tools for understanding challenging concepts and visualizing the geometric aspects of the subject. Principles of Linear Algebra with Maple uniquely addresses the quickly growing intersection between subject theory and numerical computation, providing all of the commands required to solve complex and computationally challenging linear algebra problems using Maple. The authors supply an informal, accessible, and easy-to-follow treatment of key topics often found in a first course in linear algebra. Requiring no prior knowledge of the software, the book begins with an introduction to the commands and programming guidelines for working with Maple. Next, the book explores linear systems of equations and matrices, applications of linear systems and matrices, determinants, inverses, and Cramer's rule. Basic linear algebra topics such as vectors, dot product, cross product, and vector projection are explained, as well as the more advanced topics of rotations in space, rolling a circle along a curve, and the TNB Frame. Subsequent chapters feature coverage of linear transformations from Rn to Rm, the geometry of linear and affine transformations, least squares fits and pseudoinverses, and eigenvalues and eigenvectors. The authors explore several topics that are not often found in introductory linear algebra books, including sensitivity to error and the effects of linear and affine maps on the geometry of objects. The Maple software highlights the topic's visual nature, as the book is complete with numerous graphics in two and three dimensions, animations, symbolic manipulations, numerical computations, and programming. In addition, a related Web site features supplemental material, including Maple code for each chapter's problems, solutions, and color versions of the book's figures. Extensively class-tested to ensure an accessible presentation, Principles of Linear Algebra with Maple is an excellent book for courses on linear algebra at the undergraduate level. It is also an ideal reference for students and professionals who would like to gain a further understanding of the use of Maple to solve linear algebra problems.

Nonlinear Optimization

Nonlinear Optimization
Title Nonlinear Optimization PDF eBook
Author William P. Fox
Publisher CRC Press
Pages 306
Release 2020-12-08
Genre Mathematics
ISBN 1000196968

Download Nonlinear Optimization Book in PDF, Epub and Kindle

Optimization is the act of obtaining the "best" result under given circumstances. In design, construction, and maintenance of any engineering system, engineers must make technological and managerial decisions to minimize either the effort or cost required or to maximize benefits. There is no single method available for solving all optimization problems efficiently. Several optimization methods have been developed for different types of problems. The optimum-seeking methods are mathematical programming techniques (specifically, nonlinear programming techniques). Nonlinear Optimization: Models and Applications presents the concepts in several ways to foster understanding. Geometric interpretation: is used to re-enforce the concepts and to foster understanding of the mathematical procedures. The student sees that many problems can be analyzed, and approximate solutions found before analytical solutions techniques are applied. Numerical approximations: early on, the student is exposed to numerical techniques. These numerical procedures are algorithmic and iterative. Worksheets are provided in Excel, MATLAB®, and MapleTM to facilitate the procedure. Algorithms: all algorithms are provided with a step-by-step format. Examples follow the summary to illustrate its use and application. Nonlinear Optimization: Models and Applications: Emphasizes process and interpretation throughout Presents a general classification of optimization problems Addresses situations that lead to models illustrating many types of optimization problems Emphasizes model formulations Addresses a special class of problems that can be solved using only elementary calculus Emphasizes model solution and model sensitivity analysis About the author: William P. Fox is an emeritus professor in the Department of Defense Analysis at the Naval Postgraduate School. He received his Ph.D. at Clemson University and has taught at the United States Military Academy and at Francis Marion University where he was the chair of mathematics. He has written many publications, including over 20 books and over 150 journal articles. Currently, he is an adjunct professor in the Department of Mathematics at the College of William and Mary. He is the emeritus director of both the High School Mathematical Contest in Modeling and the Mathematical Contest in Modeling.