Limit Theorems of Polynomial Approximation with Exponential Weights
Title | Limit Theorems of Polynomial Approximation with Exponential Weights PDF eBook |
Author | Michael I. Ganzburg |
Publisher | American Mathematical Soc. |
Pages | 178 |
Release | 2008 |
Genre | Mathematics |
ISBN | 0821840630 |
The author develops the limit relations between the errors of polynomial approximation in weighted metrics and apply them to various problems in approximation theory such as asymptotically best constants, convergence of polynomials, approximation of individual functions, and multidimensional limit theorems of polynomial approximation.
Limit Theorems of Polynomial Approximation with Exponential Weights
Title | Limit Theorems of Polynomial Approximation with Exponential Weights PDF eBook |
Author | Michael I. Ganzburg |
Publisher | American Mathematical Society(RI) |
Pages | 178 |
Release | 2014-09-11 |
Genre | Approximation theory |
ISBN | 9781470405038 |
The author develops the limit relations between the errors of polynomial approximation in weighted metrics and apply them to various problems in approximation theory such as asymptotically best constants, convergence of polynomials, approximation of individual functions, and multidimensional limit theorems of polynomial approximation.
Asymptotic Expansions for Infinite Weighted Convolutions of Heavy Tail Distributions and Applications
Title | Asymptotic Expansions for Infinite Weighted Convolutions of Heavy Tail Distributions and Applications PDF eBook |
Author | Philippe Barbe |
Publisher | American Mathematical Soc. |
Pages | 133 |
Release | 2009 |
Genre | Mathematics |
ISBN | 0821842595 |
"January 2009, volume 197, number 922 (Fourth of five numbers)."
The Scaling Limit of the Correlation of Holes on the Triangular Lattice with Periodic Boundary Conditions
Title | The Scaling Limit of the Correlation of Holes on the Triangular Lattice with Periodic Boundary Conditions PDF eBook |
Author | Mihai Ciucu |
Publisher | American Mathematical Soc. |
Pages | 118 |
Release | 2009-04-10 |
Genre | Science |
ISBN | 0821843265 |
The author defines the correlation of holes on the triangular lattice under periodic boundary conditions and studies its asymptotics as the distances between the holes grow to infinity. He proves that the joint correlation of an arbitrary collection of triangular holes of even side-lengths (in lattice spacing units) satisfies, for large separations between the holes, a Coulomb law and a superposition principle that perfectly parallel the laws of two dimensional electrostatics, with physical charges corresponding to holes, and their magnitude to the difference between the number of right-pointing and left-pointing unit triangles in each hole. The author details this parallel by indicating that, as a consequence of the results, the relative probabilities of finding a fixed collection of holes at given mutual distances (when sampling uniformly at random over all unit rhombus tilings of the complement of the holes) approach, for large separations between the holes, the relative probabilities of finding the corresponding two dimensional physical system of charges at given mutual distances. Physical temperature corresponds to a parameter refining the background triangular lattice. He also gives an equivalent phrasing of the results in terms of covering surfaces of given holonomy. From this perspective, two dimensional electrostatic potential energy arises by averaging over all possible discrete geometries of the covering surfaces.
Galois Extensions of Structured Ring Spectra/Stably Dualizable Groups
Title | Galois Extensions of Structured Ring Spectra/Stably Dualizable Groups PDF eBook |
Author | John Rognes |
Publisher | American Mathematical Soc. |
Pages | 154 |
Release | 2008 |
Genre | Mathematics |
ISBN | 0821840762 |
The author introduces the notion of a Galois extension of commutative $S$-algebras ($E_\infty$ ring spectra), often localized with respect to a fixed homology theory. There are numerous examples, including some involving Eilenberg-Mac Lane spectra of commutative rings, real and complex topological $K$-theory, Lubin-Tate spectra and cochain $S$-algebras. He establishes the main theorem of Galois theory in this generality. Its proof involves the notions of separable and etale extensions of commutative $S$-algebras, and the Goerss-Hopkins-Miller theory for $E_\infty$ mapping spaces. He shows that the global sphere spectrum $S$ is separably closed, using Minkowski's discriminant theorem, and he estimates the separable closure of its localization with respect to each of the Morava $K$-theories. He also defines Hopf-Galois extensions of commutative $S$-algebras and studies the complex cobordism spectrum $MU$ as a common integral model for all of the local Lubin-Tate Galois extensions. The author extends the duality theory for topological groups from the classical theory for compact Lie groups, via the topological study by J. R. Klein and the $p$-complete study for $p$-compact groups by T. Bauer, to a general duality theory for stably dualizable groups in the $E$-local stable homotopy category, for any spectrum $E$.
The Generalized Triangle Inequalities in Symmetric Spaces and Buildings with Applications to Algebra
Title | The Generalized Triangle Inequalities in Symmetric Spaces and Buildings with Applications to Algebra PDF eBook |
Author | Michael Kapovich |
Publisher | American Mathematical Soc. |
Pages | 98 |
Release | 2008 |
Genre | Mathematics |
ISBN | 0821840541 |
In this paper the authors apply their results on the geometry of polygons in infinitesimal symmetric spaces and symmetric spaces and buildings to four problems in algebraic group theory. Two of these problems are generalizations of the problems of finding the constraints on the eigenvalues (resp. singular values) of a sum (resp. product) when the eigenvalues (singular values) of each summand (factor) are fixed. The other two problems are related to the nonvanishing of the structure constants of the (spherical) Hecke and representation rings associated with a split reductive algebraic group over $\mathbb{Q}$ and its complex Langlands' dual. The authors give a new proof of the Saturation Conjecture for $GL(\ell)$ as a consequence of their solution of the corresponding saturation problem for the Hecke structure constants for all split reductive algebraic groups over $\mathbb{Q}$.
Weakly Differentiable Mappings between Manifolds
Title | Weakly Differentiable Mappings between Manifolds PDF eBook |
Author | Piotr Hajłasz |
Publisher | American Mathematical Soc. |
Pages | 88 |
Release | 2008 |
Genre | Mathematics |
ISBN | 0821840797 |
The authors study Sobolev classes of weakly differentiable mappings $f: {\mathbb X}\rightarrow {\mathbb Y}$ between compact Riemannian manifolds without boundary. These mappings need not be continuous. They actually possess less regularity than the mappings in ${\mathcal W}{1, n}({\mathbb X}\, \, {\mathbb Y})\, $, $n=\mbox{dim}\, {\mathbb X}$. The central themes being discussed a