Levy Processes, Integral Equations, Statistical Physics: Connections and Interactions

Levy Processes, Integral Equations, Statistical Physics: Connections and Interactions
Title Levy Processes, Integral Equations, Statistical Physics: Connections and Interactions PDF eBook
Author Lev A. Sakhnovich
Publisher Springer Science & Business Media
Pages 246
Release 2012-07-18
Genre Mathematics
ISBN 3034803567

Download Levy Processes, Integral Equations, Statistical Physics: Connections and Interactions Book in PDF, Epub and Kindle

In a number of famous works, M. Kac showed that various methods of probability theory can be fruitfully applied to important problems of analysis. The interconnection between probability and analysis also plays a central role in the present book. However, our approach is mainly based on the application of analysis methods (the method of operator identities, integral equations theory, dual systems, integrable equations) to probability theory (Levy processes, M. Kac's problems, the principle of imperceptibility of the boundary, signal theory). The essential part of the book is dedicated to problems of statistical physics (classical and quantum cases). We consider the corresponding statistical problems (Gibbs-type formulas, non-extensive statistical mechanics, Boltzmann equation) from the game point of view (the game between energy and entropy). One chapter is dedicated to the construction of special examples instead of existence theorems (D. Larson's theorem, Ringrose's hypothesis, the Kadison-Singer and Gohberg-Krein questions). We also investigate the Bezoutiant operator. In this context, we do not make the assumption that the Bezoutiant operator is normally solvable, allowing us to investigate the special classes of the entire functions.

Integral Equations with Difference Kernels on Finite Intervals

Integral Equations with Difference Kernels on Finite Intervals
Title Integral Equations with Difference Kernels on Finite Intervals PDF eBook
Author Lev A. Sakhnovich
Publisher Birkhäuser
Pages 240
Release 2015-05-05
Genre Mathematics
ISBN 3319164899

Download Integral Equations with Difference Kernels on Finite Intervals Book in PDF, Epub and Kindle

This book focuses on solving integral equations with difference kernels on finite intervals. The corresponding problem on the semiaxis was previously solved by N. Wiener–E. Hopf and by M.G. Krein. The problem on finite intervals, though significantly more difficult, may be solved using our method of operator identities. This method is also actively employed in inverse spectral problems, operator factorization and nonlinear integral equations. Applications of the obtained results to optimal synthesis, light scattering, diffraction, and hydrodynamics problems are discussed in this book, which also describes how the theory of operators with difference kernels is applied to stable processes and used to solve the famous M. Kac problems on stable processes. In this second edition these results are extensively generalized and include the case of all Levy processes. We present the convolution expression for the well-known Ito formula of the generator operator, a convolution expression that has proven to be fruitful. Furthermore we have added a new chapter on triangular representation, which is closely connected with previous results and includes a new important class of operators with non-trivial invariant subspaces. Numerous formulations and proofs have now been improved, and the bibliography has been updated to reflect more recent additions to the body of literature.

Recent Advances in Inverse Scattering, Schur Analysis and Stochastic Processes

Recent Advances in Inverse Scattering, Schur Analysis and Stochastic Processes
Title Recent Advances in Inverse Scattering, Schur Analysis and Stochastic Processes PDF eBook
Author Daniel Alpay
Publisher Birkhäuser
Pages 396
Release 2015-04-30
Genre Mathematics
ISBN 3319103350

Download Recent Advances in Inverse Scattering, Schur Analysis and Stochastic Processes Book in PDF, Epub and Kindle

The volume is dedicated to Lev Sakhnovich, who made fundamental contributions in operator theory and related topics. Besides bibliographic material, it includes a number of selected papers related to Lev Sakhnovich's research interests. The papers are related to operator identities, moment problems, random matrices and linear stochastic systems.

Lévy Processes and Stochastic Calculus

Lévy Processes and Stochastic Calculus
Title Lévy Processes and Stochastic Calculus PDF eBook
Author David Applebaum
Publisher Cambridge University Press
Pages 461
Release 2009-04-30
Genre Mathematics
ISBN 1139477986

Download Lévy Processes and Stochastic Calculus Book in PDF, Epub and Kindle

Lévy processes form a wide and rich class of random process, and have many applications ranging from physics to finance. Stochastic calculus is the mathematics of systems interacting with random noise. Here, the author ties these two subjects together, beginning with an introduction to the general theory of Lévy processes, then leading on to develop the stochastic calculus for Lévy processes in a direct and accessible way. This fully revised edition now features a number of new topics. These include: regular variation and subexponential distributions; necessary and sufficient conditions for Lévy processes to have finite moments; characterisation of Lévy processes with finite variation; Kunita's estimates for moments of Lévy type stochastic integrals; new proofs of Ito representation and martingale representation theorems for general Lévy processes; multiple Wiener-Lévy integrals and chaos decomposition; an introduction to Malliavin calculus; an introduction to stability theory for Lévy-driven SDEs.

Inverse Problems and Nonlinear Evolution Equations

Inverse Problems and Nonlinear Evolution Equations
Title Inverse Problems and Nonlinear Evolution Equations PDF eBook
Author Alexander L. Sakhnovich
Publisher Walter de Gruyter
Pages 356
Release 2013-07-31
Genre Mathematics
ISBN 3110258617

Download Inverse Problems and Nonlinear Evolution Equations Book in PDF, Epub and Kindle

This book is based on the method of operator identities and related theory of S-nodes, both developed by Lev Sakhnovich. The notion of the transfer matrix function generated by the S-node plays an essential role. The authors present fundamental solutions of various important systems of differential equations using the transfer matrix function, that is, either directly in the form of the transfer matrix function or via the representation in this form of the corresponding Darboux matrix, when Bäcklund–Darboux transformations and explicit solutions are considered. The transfer matrix function representation of the fundamental solution yields solution of an inverse problem, namely, the problem to recover system from its Weyl function. Weyl theories of selfadjoint and skew-selfadjoint Dirac systems, related canonical systems, discrete Dirac systems, system auxiliary to the N-wave equation and a system rationally depending on the spectral parameter are obtained in this way. The results on direct and inverse problems are applied in turn to the study of the initial-boundary value problems for integrable (nonlinear) wave equations via inverse spectral transformation method. Evolution of the Weyl function and solution of the initial-boundary value problem in a semi-strip are derived for many important nonlinear equations. Some uniqueness and global existence results are also proved in detail using evolution formulas. The reading of the book requires only some basic knowledge of linear algebra, calculus and operator theory from the standard university courses.

Contemporary Research in Elliptic PDEs and Related Topics

Contemporary Research in Elliptic PDEs and Related Topics
Title Contemporary Research in Elliptic PDEs and Related Topics PDF eBook
Author Serena Dipierro
Publisher Springer
Pages 502
Release 2019-07-12
Genre Mathematics
ISBN 303018921X

Download Contemporary Research in Elliptic PDEs and Related Topics Book in PDF, Epub and Kindle

This volume collects contributions from the speakers at an INdAM Intensive period held at the University of Bari in 2017. The contributions cover several aspects of partial differential equations whose development in recent years has experienced major breakthroughs in terms of both theory and applications. The topics covered include nonlocal equations, elliptic equations and systems, fully nonlinear equations, nonlinear parabolic equations, overdetermined boundary value problems, maximum principles, geometric analysis, control theory, mean field games, and bio-mathematics. The authors are trailblazers in these topics and present their work in a way that is exhaustive and clearly accessible to PhD students and early career researcher. As such, the book offers an excellent introduction to a variety of fundamental topics of contemporary investigation and inspires novel and high-quality research.

Lévy Processes

Lévy Processes
Title Lévy Processes PDF eBook
Author Ole E Barndorff-Nielsen
Publisher Springer Science & Business Media
Pages 414
Release 2012-12-06
Genre Mathematics
ISBN 1461201977

Download Lévy Processes Book in PDF, Epub and Kindle

A Lévy process is a continuous-time analogue of a random walk, and as such, is at the cradle of modern theories of stochastic processes. Martingales, Markov processes, and diffusions are extensions and generalizations of these processes. In the past, representatives of the Lévy class were considered most useful for applications to either Brownian motion or the Poisson process. Nowadays the need for modeling jumps, bursts, extremes and other irregular behavior of phenomena in nature and society has led to a renaissance of the theory of general Lévy processes. Researchers and practitioners in fields as diverse as physics, meteorology, statistics, insurance, and finance have rediscovered the simplicity of Lévy processes and their enormous flexibility in modeling tails, dependence and path behavior. This volume, with an excellent introductory preface, describes the state-of-the-art of this rapidly evolving subject with special emphasis on the non-Brownian world. Leading experts present surveys of recent developments, or focus on some most promising applications. Despite its special character, every topic is aimed at the non- specialist, keen on learning about the new exciting face of a rather aged class of processes. An extensive bibliography at the end of each article makes this an invaluable comprehensive reference text. For the researcher and graduate student, every article contains open problems and points out directions for futurearch. The accessible nature of the work makes this an ideal introductory text for graduate seminars in applied probability, stochastic processes, physics, finance, and telecommunications, and a unique guide to the world of Lévy processes.