Lectures on the Analytical Theory of Quadratic Forms

Lectures on the Analytical Theory of Quadratic Forms
Title Lectures on the Analytical Theory of Quadratic Forms PDF eBook
Author Carl Ludwig Siegel
Publisher
Pages 258
Release 1963
Genre Forms, Quadratic
ISBN

Download Lectures on the Analytical Theory of Quadratic Forms Book in PDF, Epub and Kindle

Diophantine Methods, Lattices, and Arithmetic Theory of Quadratic Forms

Diophantine Methods, Lattices, and Arithmetic Theory of Quadratic Forms
Title Diophantine Methods, Lattices, and Arithmetic Theory of Quadratic Forms PDF eBook
Author Wai Kiu Chan
Publisher American Mathematical Soc.
Pages 259
Release 2013
Genre Mathematics
ISBN 0821883186

Download Diophantine Methods, Lattices, and Arithmetic Theory of Quadratic Forms Book in PDF, Epub and Kindle

This volume contains the proceedings of the International Workshop on Diophantine Methods, Lattices, and Arithmetic Theory of Quadratic Forms. The articles cover the arithmetic theory of quadratic forms and lattices, as well as the effective Diophantine analysis with height functions.

Quadratic and Higher Degree Forms

Quadratic and Higher Degree Forms
Title Quadratic and Higher Degree Forms PDF eBook
Author Krishnaswami Alladi
Publisher Springer Science & Business Media
Pages 303
Release 2013-08-13
Genre Mathematics
ISBN 1461474884

Download Quadratic and Higher Degree Forms Book in PDF, Epub and Kindle

In the last decade, the areas of quadratic and higher degree forms have witnessed dramatic advances. This volume is an outgrowth of three seminal conferences on these topics held in 2009, two at the University of Florida and one at the Arizona Winter School. The volume also includes papers from the two focused weeks on quadratic forms and integral lattices at the University of Florida in 2010.Topics discussed include the links between quadratic forms and automorphic forms, representation of integers and forms by quadratic forms, connections between quadratic forms and lattices, and algorithms for quaternion algebras and quadratic forms. The book will be of interest to graduate students and mathematicians wishing to study quadratic and higher degree forms, as well as to established researchers in these areas. Quadratic and Higher Degree Forms contains research and semi-expository papers that stem from the presentations at conferences at the University of Florida as well as survey lectures on quadratic forms based on the instructional workshop for graduate students held at the Arizona Winter School. The survey papers in the volume provide an excellent introduction to various aspects of the theory of quadratic forms starting from the basic concepts and provide a glimpse of some of the exciting questions currently being investigated. The research and expository papers present the latest advances on quadratic and higher degree forms and their connections with various branches of mathematics.

Analytic And Combinatorial Number Theory: The Legacy Of Ramanujan - Contributions In Honor Of Bruce C. Berndt

Analytic And Combinatorial Number Theory: The Legacy Of Ramanujan - Contributions In Honor Of Bruce C. Berndt
Title Analytic And Combinatorial Number Theory: The Legacy Of Ramanujan - Contributions In Honor Of Bruce C. Berndt PDF eBook
Author George E Andrews
Publisher World Scientific
Pages 704
Release 2024-08-19
Genre Mathematics
ISBN 9811277389

Download Analytic And Combinatorial Number Theory: The Legacy Of Ramanujan - Contributions In Honor Of Bruce C. Berndt Book in PDF, Epub and Kindle

This volume reflects the contributions stemming from the conference Analytic and Combinatorial Number Theory: The Legacy of Ramanujan which took place at the University of Illinois at Urbana-Champaign on June 6-9, 2019. The conference included 26 plenary talks, 71 contributed talks, and 170 participants. As was the case for the conference, this book is in honor of Bruce C Berndt and in celebration of his mathematics and his 80th birthday.Along with a number of papers previously appearing in Special Issues of the International Journal of Number Theory, the book collects together a few more papers, a biography of Bruce by Atul Dixit and Ae Ja Yee, a preface by George Andrews, a gallery of photos from the conference, a number of speeches from the conference banquet, the conference poster, a list of Bruce's publications at the time this volume was created, and a list of the talks from the conference.

Introductory Lectures on Automorphic Forms

Introductory Lectures on Automorphic Forms
Title Introductory Lectures on Automorphic Forms PDF eBook
Author Walter L. Baily Jr.
Publisher Princeton University Press
Pages 279
Release 2015-03-08
Genre Mathematics
ISBN 1400867150

Download Introductory Lectures on Automorphic Forms Book in PDF, Epub and Kindle

Intended as an introductory guide, this work takes for its subject complex, analytic, automorphic forms and functions on (a domain equivalent to) a bounded domain in a finite-dimensional, complex, vector space, usually denoted Cn). Part I, essentially elementary, deals with complex analytic automorphic forms on a bounded domain; it presents H. Cartan's proof of the existence of the projective imbedding of the compact quotient of such a domain by a discrete group. Part II treats the construction and properties of automorphic forms with respect to an arithmetic group acting on a bounded symmetric domain; this part is highly technical, and based largely on relevant results in functional analysis due to Godement and Harish-Chandra. In Part III, Professor Baily extends the discussion to include some special topics, specifically, the arithmetic propertics of Eisenstein series and their connection with the arithmetic theory of quadratic forms. Unlike classical works on the subject, this book deals with more than one variable, and it differs notably in its treatment of analysis on the group of automorphisms of the domain. It is concerned with the case of complex analytic automorphic forms because of their connection with algebraic geometry, and so is distinct from other modern treatises that deal with automorphic forms on a semi-simple Lie group. Having had its inception as graduate- level lectures, the book assumes some knowledge of complex function theory and algebra, for the serious reader is expected to supply certain details for himself, especially in such related areas as functional analysis and algebraic groups. Originally published in 1973. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Lectures

Lectures
Title Lectures PDF eBook
Author Erich Hecke
Publisher
Pages 56
Release 1938
Genre Dirichlet series
ISBN

Download Lectures Book in PDF, Epub and Kindle

Automorphic Forms And Zeta Functions - Proceedings Of The Conference In Memory Of Tsuneo Arakawa

Automorphic Forms And Zeta Functions - Proceedings Of The Conference In Memory Of Tsuneo Arakawa
Title Automorphic Forms And Zeta Functions - Proceedings Of The Conference In Memory Of Tsuneo Arakawa PDF eBook
Author Masanobu Kaneko
Publisher World Scientific
Pages 400
Release 2006-01-03
Genre Mathematics
ISBN 9814478776

Download Automorphic Forms And Zeta Functions - Proceedings Of The Conference In Memory Of Tsuneo Arakawa Book in PDF, Epub and Kindle

This volume contains a valuable collection of articles presented at a conference on Automorphic Forms and Zeta Functions in memory of Tsuneo Arakawa, an eminent researcher in modular forms in several variables and zeta functions. The book begins with a review of his works, followed by 16 articles by experts in the fields including H Aoki, R Berndt, K Hashimoto, S Hayashida, Y Hironaka, H Katsurada, W Kohnen, A Krieg, A Murase, H Narita, T Oda, B Roberts, R Schmidt, R Schulze-Pillot, N Skoruppa, T Sugano, and D Zagier. A variety of topics in the theory of modular forms and zeta functions are covered: Theta series and the basis problems, Jacobi forms, automorphic forms on Sp(1, q), double zeta functions, special values of zeta and L-functions, many of which are closely related to Arakawa's works.This collection of papers illustrates Arakawa's contributions and the current trends in modular forms in several variables and related zeta functions.