Lectures on Polytopes
Title | Lectures on Polytopes PDF eBook |
Author | Günter M. Ziegler |
Publisher | Springer Science & Business Media |
Pages | 388 |
Release | 2012-05-03 |
Genre | Mathematics |
ISBN | 038794365X |
Based on a graduate course at the Technische Universität, Berlin, these lectures present a wealth of material on the modern theory of convex polytopes. The straightforward exposition features many illustrations, and complete proofs for most theorems. With only linear algebra as a prerequisite, it takes the reader quickly from the basics to topics of recent research. The lectures introduce basic facts about polytopes, with an emphasis on methods that yield the results, discuss important examples and elegant constructions, and show the excitement of current work in the field. They will provide interesting and enjoyable reading for researchers as well as students.
Lectures on Polytopes
Title | Lectures on Polytopes PDF eBook |
Author | Günter M. Ziegler |
Publisher | Springer |
Pages | 388 |
Release | 2012-05-03 |
Genre | Mathematics |
ISBN | 9780387943657 |
Based on a graduate course at the Technische Universität, Berlin, these lectures present a wealth of material on the modern theory of convex polytopes. The straightforward exposition features many illustrations, and complete proofs for most theorems. With only linear algebra as a prerequisite, it takes the reader quickly from the basics to topics of recent research. The lectures introduce basic facts about polytopes, with an emphasis on methods that yield the results, discuss important examples and elegant constructions, and show the excitement of current work in the field. They will provide interesting and enjoyable reading for researchers as well as students.
Lectures on Discrete Geometry
Title | Lectures on Discrete Geometry PDF eBook |
Author | Jiri Matousek |
Publisher | Springer Science & Business Media |
Pages | 491 |
Release | 2013-12-01 |
Genre | Mathematics |
ISBN | 1461300398 |
The main topics in this introductory text to discrete geometry include basics on convex sets, convex polytopes and hyperplane arrangements, combinatorial complexity of geometric configurations, intersection patterns and transversals of convex sets, geometric Ramsey-type results, and embeddings of finite metric spaces into normed spaces. In each area, the text explains several key results and methods.
Grobner Bases and Convex Polytopes
Title | Grobner Bases and Convex Polytopes PDF eBook |
Author | Bernd Sturmfels |
Publisher | American Mathematical Soc. |
Pages | 176 |
Release | 1996 |
Genre | Mathematics |
ISBN | 0821804871 |
This book is about the interplay of computational commutative algebra and the theory of convex polytopes. It centres around a special class of ideals in a polynomial ring: the class of toric ideals. They are characterized as those prime ideals that are generated by monomial differences or as the defining ideals of toric varieties (not necessarily normal). The interdisciplinary nature of the study of Gröbner bases is reflected by the specific applications appearing in this book. These applications lie in the domains of integer programming and computational statistics. The mathematical tools presented in the volume are drawn from commutative algebra, combinatorics, and polyhedral geometry.
Lectures in Geometric Combinatorics
Title | Lectures in Geometric Combinatorics PDF eBook |
Author | Rekha R. Thomas |
Publisher | American Mathematical Soc. |
Pages | 156 |
Release | 2006 |
Genre | Mathematics |
ISBN | 9780821841402 |
This book presents a course in the geometry of convex polytopes in arbitrary dimension, suitable for an advanced undergraduate or beginning graduate student. The book starts with the basics of polytope theory. Schlegel and Gale diagrams are introduced as geometric tools to visualize polytopes in high dimension and to unearth bizarre phenomena in polytopes. The heart of the book is a treatment of the secondary polytope of a point configuration and its connections to the statepolytope of the toric ideal defined by the configuration. These polytopes are relatively recent constructs with numerous connections to discrete geometry, classical algebraic geometry, symplectic geometry, and combinatorics. The connections rely on Grobner bases of toric ideals and other methods fromcommutative algebra. The book is self-contained and does not require any background beyond basic linear algebra. With numerous figures and exercises, it can be used as a textbook for courses on geometric, combinatorial, and computational aspects of the theory of polytopes.
Lectures on Convex Geometry
Title | Lectures on Convex Geometry PDF eBook |
Author | Daniel Hug |
Publisher | Springer Nature |
Pages | 300 |
Release | 2020-08-27 |
Genre | Mathematics |
ISBN | 3030501809 |
This book provides a self-contained introduction to convex geometry in Euclidean space. After covering the basic concepts and results, it develops Brunn–Minkowski theory, with an exposition of mixed volumes, the Brunn–Minkowski inequality, and some of its consequences, including the isoperimetric inequality. Further central topics are then treated, such as surface area measures, projection functions, zonoids, and geometric valuations. Finally, an introduction to integral-geometric formulas in Euclidean space is provided. The numerous exercises and the supplementary material at the end of each section form an essential part of the book. Convexity is an elementary and natural concept. It plays a key role in many mathematical fields, including functional analysis, optimization, probability theory, and stochastic geometry. Paving the way to the more advanced and specialized literature, the material will be accessible to students in the third year and can be covered in one semester.
Polytopes - Combinations and Computation
Title | Polytopes - Combinations and Computation PDF eBook |
Author | Gil Kalai |
Publisher | Springer Science & Business Media |
Pages | 236 |
Release | 2000-08-01 |
Genre | Mathematics |
ISBN | 9783764363512 |
Questions that arose from linear programming and combinatorial optimization have been a driving force for modern polytope theory, such as the diameter questions motivated by the desire to understand the complexity of the simplex algorithm, or the need to study facets for use in cutting plane procedures. In addition, algorithms now provide the means to computationally study polytopes, to compute their parameters such as flag vectors, graphs and volumes, and to construct examples of large complexity. The papers of this volume thus display a wide panorama of connections of polytope theory with other fields. Areas such as discrete and computational geometry, linear and combinatorial optimization, and scientific computing have contributed a combination of questions, ideas, results, algorithms and, finally, computer programs.