Lectures on Lyapunov Exponents

Lectures on Lyapunov Exponents
Title Lectures on Lyapunov Exponents PDF eBook
Author Marcelo Viana
Publisher Cambridge University Press
Pages 217
Release 2014-07-24
Genre Mathematics
ISBN 1316062694

Download Lectures on Lyapunov Exponents Book in PDF, Epub and Kindle

The theory of Lyapunov exponents originated over a century ago in the study of the stability of solutions of differential equations. Written by one of the subject's leading authorities, this book is both an account of the classical theory, from a modern view, and an introduction to the significant developments relating the subject to dynamical systems, ergodic theory, mathematical physics and probability. It is based on the author's own graduate course and is reasonably self-contained with an extensive set of exercises provided at the end of each chapter. This book makes a welcome addition to the literature, serving as a graduate text and a valuable reference for researchers in the field.

Lyapunov Exponents and Smooth Ergodic Theory

Lyapunov Exponents and Smooth Ergodic Theory
Title Lyapunov Exponents and Smooth Ergodic Theory PDF eBook
Author Luis Barreira
Publisher American Mathematical Soc.
Pages 166
Release 2002
Genre Mathematics
ISBN 0821829211

Download Lyapunov Exponents and Smooth Ergodic Theory Book in PDF, Epub and Kindle

A systematic introduction to the core of smooth ergodic theory. An expanded version of an earlier work by the same authors, it describes the general (abstract) theory of Lyapunov exponents and the theory's applications to the stability theory of differential equations, the stable manifold theory, absolute continuity of stable manifolds, and the ergodic theory of dynamical systems with nonzero Lyapunov exponents (including geodesic flows). It could be used as a primary text for a course on nonuniform hyperbolic theory or as supplemental reading for a course on dynamical systems. Assumes a basic knowledge of real analysis, measure theory, differential equations, and topology. c. Book News Inc.

Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds

Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds
Title Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds PDF eBook
Author Mark Pollicott
Publisher Cambridge University Press
Pages 176
Release 1993-02-04
Genre Mathematics
ISBN 9780521435932

Download Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds Book in PDF, Epub and Kindle

These lecture notes provide a unique introduction to Pesin theory and its applications.

Six Lectures on Dynamical Systems

Six Lectures on Dynamical Systems
Title Six Lectures on Dynamical Systems PDF eBook
Author Bernd Aulbach
Publisher World Scientific
Pages 332
Release 1996
Genre Mathematics
ISBN 9789810225483

Download Six Lectures on Dynamical Systems Book in PDF, Epub and Kindle

This volume consists of six articles covering different facets of the mathematical theory of dynamical systems. The topics range from topological foundations through invariant manifolds, decoupling, perturbations and computations to control theory. All contributions are based on a sound mathematical analysis. Some of them provide detailed proofs while others are of a survey character. In any case, emphasis is put on motivation and guiding ideas. Many examples are included.The papers of this volume grew out of a tutorial workshop for graduate students in mathematics held at the University of Augsburg. Each of the contributions is self-contained and provides an in-depth insight into some topic of current interest in the mathematical theory of dynamical systems. The text is suitable for courses and seminars on a graduate student level.

Lyapunov Exponents

Lyapunov Exponents
Title Lyapunov Exponents PDF eBook
Author Ludwig Arnold
Publisher Lecture Notes in Mathematics
Pages 392
Release 1986-03
Genre Mathematics
ISBN

Download Lyapunov Exponents Book in PDF, Epub and Kindle

Since the predecessor to this volume (LNM 1186, Eds. L. Arnold, V. Wihstutz)appeared in 1986, significant progress has been made in the theory and applications of Lyapunov exponents - one of the key concepts of dynamical systems - and in particular, pronounced shifts towards nonlinear and infinite-dimensional systems and engineering applications are observable. This volume opens with an introductory survey article (Arnold/Crauel) followed by 26 original (fully refereed) research papers, some of which have in part survey character. From the Contents: L. Arnold, H. Crauel: Random Dynamical Systems.- I.Ya. Goldscheid: Lyapunov exponents and asymptotic behaviour of the product of random matrices.- Y. Peres: Analytic dependence of Lyapunov exponents on transition probabilities.- O. Knill: The upper Lyapunov exponent of Sl (2, R) cocycles:Discontinuity and the problem of positivity.- Yu.D. Latushkin, A.M. Stepin: Linear skew-product flows and semigroups of weighted composition operators.- P. Baxendale: Invariant measures for nonlinear stochastic differential equations.- Y. Kifer: Large deviationsfor random expanding maps.- P. Thieullen: Generalisation du theoreme de Pesin pour l' -entropie.- S.T. Ariaratnam, W.-C. Xie: Lyapunov exponents in stochastic structural mechanics.- F. Colonius, W. Kliemann: Lyapunov exponents of control flows.

Lectures on Fractal Geometry and Dynamical Systems

Lectures on Fractal Geometry and Dynamical Systems
Title Lectures on Fractal Geometry and Dynamical Systems PDF eBook
Author Ya. B. Pesin
Publisher American Mathematical Soc.
Pages 334
Release 2009
Genre Mathematics
ISBN 0821848895

Download Lectures on Fractal Geometry and Dynamical Systems Book in PDF, Epub and Kindle

Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular 'chaotic' motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them. The first half of the book introduces some of the key ideas in fractal geometry and dimension theory - Cantor sets, Hausdorff dimension, box dimension - using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures and of the relationship between dimension, entropy, and Lyapunov exponents. In the second half of the book some examples of dynamical systems are considered and various phenomena of chaotic behaviour are discussed, including bifurcations, hyperbolicity, attractors, horseshoes, and intermittent and persistent chaos. These phenomena are naturally revealed in the course of our study of two real models from science - the FitzHugh - Nagumo model and the Lorenz system of differential equations. This book is accessible to undergraduate students and requires only standard knowledge in calculus, linear algebra, and differential equations. Elements of point set topology and measure theory are introduced as needed. This book is a result of the MASS course in analysis at Penn State University in the fall semester of 2008.

Lyapunov Exponents

Lyapunov Exponents
Title Lyapunov Exponents PDF eBook
Author Luís Barreira
Publisher Birkhäuser
Pages 273
Release 2017-12-30
Genre Mathematics
ISBN 3319712616

Download Lyapunov Exponents Book in PDF, Epub and Kindle

This book offers a self-contained introduction to the theory of Lyapunov exponents and its applications, mainly in connection with hyperbolicity, ergodic theory and multifractal analysis. It discusses the foundations and some of the main results and main techniques in the area, while also highlighting selected topics of current research interest. With the exception of a few basic results from ergodic theory and the thermodynamic formalism, all the results presented include detailed proofs. The book is intended for all researchers and graduate students specializing in dynamical systems who are looking for a comprehensive overview of the foundations of the theory and a sample of its applications.