Lectures on Hyperbolic Geometry

Lectures on Hyperbolic Geometry
Title Lectures on Hyperbolic Geometry PDF eBook
Author Riccardo Benedetti
Publisher Springer Science & Business Media
Pages 343
Release 2012-12-06
Genre Mathematics
ISBN 3642581587

Download Lectures on Hyperbolic Geometry Book in PDF, Epub and Kindle

Focussing on the geometry of hyperbolic manifolds, the aim here is to provide an exposition of some fundamental results, while being as self-contained, complete, detailed and unified as possible. Following some classical material on the hyperbolic space and the Teichmüller space, the book centers on the two fundamental results: Mostow's rigidity theorem (including a complete proof, following Gromov and Thurston) and Margulis' lemma. These then form the basis for studying Chabauty and geometric topology; a unified exposition is given of Wang's theorem and the Jorgensen-Thurston theory; and much space is devoted to the 3D case: a complete and elementary proof of the hyperbolic surgery theorem, based on the representation of three manifolds as glued ideal tetrahedra.

Elementary Geometry in Hyperbolic Space

Elementary Geometry in Hyperbolic Space
Title Elementary Geometry in Hyperbolic Space PDF eBook
Author Werner Fenchel
Publisher Walter de Gruyter
Pages 248
Release 1989
Genre Mathematics
ISBN 9783110117349

Download Elementary Geometry in Hyperbolic Space Book in PDF, Epub and Kindle

Hyperbolic geometry is in a period of revised interest. This book contains a substantial account of the parts of the theory basic to the study of Kleinian groups, but it also contains the more broad-reaching thoughts of the author, one of the pioneers in the theory of convex bodies and a major contributor in other fields of mathematics. Annotation copyrighted by Book News, Inc., Portland, OR

Fundamentals of Hyperbolic Manifolds

Fundamentals of Hyperbolic Manifolds
Title Fundamentals of Hyperbolic Manifolds PDF eBook
Author R. D. Canary
Publisher Cambridge University Press
Pages 356
Release 2006-04-13
Genre Mathematics
ISBN 9781139447195

Download Fundamentals of Hyperbolic Manifolds Book in PDF, Epub and Kindle

Presents reissued articles from two classic sources on hyperbolic manifolds. Part I is an exposition of Chapters 8 and 9 of Thurston's pioneering Princeton Notes; there is a new introduction describing recent advances, with an up-to-date bibliography, giving a contemporary context in which the work can be set. Part II expounds the theory of convex hull boundaries and their bending laminations. A new appendix describes recent work. Part III is Thurston's famous paper that presents the notion of earthquakes in hyperbolic geometry and proves the earthquake theorem. The final part introduces the theory of measures on the limit set, drawing attention to related ergodic theory and the exponent of convergence. The book will be welcomed by graduate students and professional mathematicians who want a rigorous introduction to some basic tools essential for the modern theory of hyperbolic manifolds.

The Biggest Ideas in the Universe

The Biggest Ideas in the Universe
Title The Biggest Ideas in the Universe PDF eBook
Author Sean Carroll
Publisher Penguin
Pages 305
Release 2022-09-20
Genre Science
ISBN 0593186591

Download The Biggest Ideas in the Universe Book in PDF, Epub and Kindle

INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.

A Gyrovector Space Approach to Hyperbolic Geometry

A Gyrovector Space Approach to Hyperbolic Geometry
Title A Gyrovector Space Approach to Hyperbolic Geometry PDF eBook
Author Abraham Ungar
Publisher Morgan & Claypool Publishers
Pages 194
Release 2009-03-08
Genre Technology & Engineering
ISBN 1598298232

Download A Gyrovector Space Approach to Hyperbolic Geometry Book in PDF, Epub and Kindle

The mere mention of hyperbolic geometry is enough to strike fear in the heart of the undergraduate mathematics and physics student. Some regard themselves as excluded from the profound insights of hyperbolic geometry so that this enormous portion of human achievement is a closed door to them. The mission of this book is to open that door by making the hyperbolic geometry of Bolyai and Lobachevsky, as well as the special relativity theory of Einstein that it regulates, accessible to a wider audience in terms of novel analogies that the modern and unknown share with the classical and familiar. These novel analogies that this book captures stem from Thomas gyration, which is the mathematical abstraction of the relativistic effect known as Thomas precession. Remarkably, the mere introduction of Thomas gyration turns Euclidean geometry into hyperbolic geometry, and reveals mystique analogies that the two geometries share. Accordingly, Thomas gyration gives rise to the prefix "gyro" that is extensively used in the gyrolanguage of this book, giving rise to terms like gyrocommutative and gyroassociative binary operations in gyrogroups, and gyrovectors in gyrovector spaces. Of particular importance is the introduction of gyrovectors into hyperbolic geometry, where they are equivalence classes that add according to the gyroparallelogram law in full analogy with vectors, which are equivalence classes that add according to the parallelogram law. A gyroparallelogram, in turn, is a gyroquadrilateral the two gyrodiagonals of which intersect at their gyromidpoints in full analogy with a parallelogram, which is a quadrilateral the two diagonals of which intersect at their midpoints. Table of Contents: Gyrogroups / Gyrocommutative Gyrogroups / Gyrovector Spaces / Gyrotrigonometry

Hyperbolic Manifolds and Discrete Groups

Hyperbolic Manifolds and Discrete Groups
Title Hyperbolic Manifolds and Discrete Groups PDF eBook
Author Michael Kapovich
Publisher Springer Science & Business Media
Pages 486
Release 2009-08-04
Genre Mathematics
ISBN 0817649131

Download Hyperbolic Manifolds and Discrete Groups Book in PDF, Epub and Kindle

Hyperbolic Manifolds and Discrete Groups is at the crossroads of several branches of mathematics: hyperbolic geometry, discrete groups, 3-dimensional topology, geometric group theory, and complex analysis. The main focus throughout the text is on the "Big Monster," i.e., on Thurston’s hyperbolization theorem, which has not only completely changes the landscape of 3-dimensinal topology and Kleinian group theory but is one of the central results of 3-dimensional topology. The book is fairly self-contained, replete with beautiful illustrations, a rich set of examples of key concepts, numerous exercises, and an extensive bibliography and index. It should serve as an ideal graduate course/seminar text or as a comprehensive reference.

Flavors of Geometry

Flavors of Geometry
Title Flavors of Geometry PDF eBook
Author Silvio Levy
Publisher Cambridge University Press
Pages 212
Release 1997-09-28
Genre Mathematics
ISBN 9780521629621

Download Flavors of Geometry Book in PDF, Epub and Kindle

Flavors of Geometry is a volume of lectures on four geometrically-influenced fields of mathematics that have experienced great development in recent years. Growing out of a series of introductory lectures given at the Mathematical Sciences Research Institute in January 1995 and January 1996, the book presents chapters by masters in their respective fields on hyperbolic geometry, dynamics in several complex variables, convex geometry, and volume estimation. Each lecture begins with a discussion of elementary concepts, examines the highlights of the field, and concludes with a look at more advanced material. The style and presentation of the chapters are clear and accessible, and most of the lectures are richly illustrated. Bibiliographies and indexes are included to encourage further reading on the topics discussed.