Lectures on Geometric Variational Problems
Title | Lectures on Geometric Variational Problems PDF eBook |
Author | Seiki Nishikawa |
Publisher | Springer Science & Business Media |
Pages | 160 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 4431684026 |
In this volume are collected notes of lectures delivered at the First In ternational Research Institute of the Mathematical Society of Japan. This conference, held at Tohoku University in July 1993, was devoted to geometry and global analysis. Subsequent to the conference, in answer to popular de mand from the participants, it was decided to publish the notes of the survey lectures. Written by the lecturers themselves, all experts in their respective fields, these notes are here presented in a single volume. It is hoped that they will provide a vivid account of the current research, from the introduc tory level up to and including the most recent results, and will indicate the direction to be taken by future researeh. This compilation begins with Jean-Pierre Bourguignon's notes entitled "An Introduction to Geometric Variational Problems," illustrating the gen eral framework of the field with many examples and providing the reader with a broad view of the current research. Following this, Kenji Fukaya's notes on "Geometry of Gauge Fields" are concerned with gauge theory and its applications to low-dimensional topology, without delving too deeply into technical detail. Special emphasis is placed on explaining the ideas of infi nite dimensional geometry that, in the literature, are often hidden behind rigorous formulations or technical arguments.
Sets of Finite Perimeter and Geometric Variational Problems
Title | Sets of Finite Perimeter and Geometric Variational Problems PDF eBook |
Author | Francesco Maggi |
Publisher | Cambridge University Press |
Pages | 475 |
Release | 2012-08-09 |
Genre | Mathematics |
ISBN | 1139560891 |
The marriage of analytic power to geometric intuition drives many of today's mathematical advances, yet books that build the connection from an elementary level remain scarce. This engaging introduction to geometric measure theory bridges analysis and geometry, taking readers from basic theory to some of the most celebrated results in modern analysis. The theory of sets of finite perimeter provides a simple and effective framework. Topics covered include existence, regularity, analysis of singularities, characterization and symmetry results for minimizers in geometric variational problems, starting from the basics about Hausdorff measures in Euclidean spaces and ending with complete proofs of the regularity of area-minimizing hypersurfaces up to singular sets of codimension 8. Explanatory pictures, detailed proofs, exercises and remarks providing heuristic motivation and summarizing difficult arguments make this graduate-level textbook suitable for self-study and also a useful reference for researchers. Readers require only undergraduate analysis and basic measure theory.
Variational Problems in Differential Geometry
Title | Variational Problems in Differential Geometry PDF eBook |
Author | Roger Bielawski |
Publisher | Cambridge University Press |
Pages | 217 |
Release | 2011-10-20 |
Genre | Mathematics |
ISBN | 1139504118 |
The field of geometric variational problems is fast-moving and influential. These problems interact with many other areas of mathematics and have strong relevance to the study of integrable systems, mathematical physics and PDEs. The workshop 'Variational Problems in Differential Geometry' held in 2009 at the University of Leeds brought together internationally respected researchers from many different areas of the field. Topics discussed included recent developments in harmonic maps and morphisms, minimal and CMC surfaces, extremal Kähler metrics, the Yamabe functional, Hamiltonian variational problems and topics related to gauge theory and to the Ricci flow. These articles reflect the whole spectrum of the subject and cover not only current results, but also the varied methods and techniques used in attacking variational problems. With a mix of original and expository papers, this volume forms a valuable reference for more experienced researchers and an ideal introduction for graduate students and postdoctoral researchers.
A Mathematical Introduction to String Theory
Title | A Mathematical Introduction to String Theory PDF eBook |
Author | Sergio Albeverio |
Publisher | Cambridge University Press |
Pages | 148 |
Release | 1997-07-17 |
Genre | Mathematics |
ISBN | 9780521556101 |
This book deals with the mathematical aspects of string theory.
Lectures on Geometric Measure Theory
Title | Lectures on Geometric Measure Theory PDF eBook |
Author | Leon Simon |
Publisher | |
Pages | 286 |
Release | 1984 |
Genre | Geometric measure theory |
ISBN | 9780867844290 |
Variational Analysis
Title | Variational Analysis PDF eBook |
Author | R. Tyrrell Rockafellar |
Publisher | Springer Science & Business Media |
Pages | 747 |
Release | 2009-06-26 |
Genre | Mathematics |
ISBN | 3642024319 |
From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.
Two-Dimensional Geometric Variational Problems
Title | Two-Dimensional Geometric Variational Problems PDF eBook |
Author | Jürgen Jost |
Publisher | |
Pages | 256 |
Release | 1991-03-29 |
Genre | Mathematics |
ISBN |
This monograph treats variational problems for mappings from a surface equipped with a conformal structure into Euclidean space or a Riemannian manifold. Presents a general theory of such variational problems, proving existence and regularity theorems with particular conceptual emphasis on the geometric aspects of the theory and thorough investigation of the connections with complex analysis. Among the topics covered are: Plateau's problem, the regularity theory of solutions, a variational approach for obtaining various conformal representation theorems, a general existence theorem for harmonic mappings, and a new approach to Teichmuller theory via harmonic maps.