Lectures on Formal and Rigid Geometry

Lectures on Formal and Rigid Geometry
Title Lectures on Formal and Rigid Geometry PDF eBook
Author Siegfried Bosch
Publisher Springer
Pages 255
Release 2014-08-22
Genre Mathematics
ISBN 3319044176

Download Lectures on Formal and Rigid Geometry Book in PDF, Epub and Kindle

The aim of this work is to offer a concise and self-contained 'lecture-style' introduction to the theory of classical rigid geometry established by John Tate, together with the formal algebraic geometry approach launched by Michel Raynaud. These Lectures are now viewed commonly as an ideal means of learning advanced rigid geometry, regardless of the reader's level of background. Despite its parsimonious style, the presentation illustrates a number of key facts even more extensively than any other previous work. This Lecture Notes Volume is a revised and slightly expanded version of a preprint that appeared in 2005 at the University of Münster's Collaborative Research Center "Geometrical Structures in Mathematics".

Rigid Geometry of Curves and Their Jacobians

Rigid Geometry of Curves and Their Jacobians
Title Rigid Geometry of Curves and Their Jacobians PDF eBook
Author Werner Lütkebohmert
Publisher Springer
Pages 398
Release 2016-01-26
Genre Mathematics
ISBN 331927371X

Download Rigid Geometry of Curves and Their Jacobians Book in PDF, Epub and Kindle

This book presents some of the most important aspects of rigid geometry, namely its applications to the study of smooth algebraic curves, of their Jacobians, and of abelian varieties - all of them defined over a complete non-archimedean valued field. The text starts with a survey of the foundation of rigid geometry, and then focuses on a detailed treatment of the applications. In the case of curves with split rational reduction there is a complete analogue to the fascinating theory of Riemann surfaces. In the case of proper smooth group varieties the uniformization and the construction of abelian varieties are treated in detail. Rigid geometry was established by John Tate and was enriched by a formal algebraic approach launched by Michel Raynaud. It has proved as a means to illustrate the geometric ideas behind the abstract methods of formal algebraic geometry as used by Mumford and Faltings. This book should be of great use to students wishing to enter this field, as well as those already working in it.

Berkeley Lectures on P-adic Geometry

Berkeley Lectures on P-adic Geometry
Title Berkeley Lectures on P-adic Geometry PDF eBook
Author Peter Scholze
Publisher Princeton University Press
Pages 260
Release 2020-05-26
Genre Mathematics
ISBN 0691202095

Download Berkeley Lectures on P-adic Geometry Book in PDF, Epub and Kindle

Berkeley Lectures on p-adic Geometry presents an important breakthrough in arithmetic geometry. In 2014, leading mathematician Peter Scholze delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoid spaces, Scholze introduced the concept of “diamonds,” which are to perfectoid spaces what algebraic spaces are to schemes. The introduction of diamonds, along with the development of a mixed-characteristic shtuka, set the stage for a critical advance in the discipline. In this book, Peter Scholze and Jared Weinstein show that the moduli space of mixed-characteristic shtukas is a diamond, raising the possibility of using the cohomology of such spaces to attack the Langlands conjectures for a reductive group over a p-adic field. This book follows the informal style of the original Berkeley lectures, with one chapter per lecture. It explores p-adic and perfectoid spaces before laying out the newer theory of shtukas and their moduli spaces. Points of contact with other threads of the subject, including p-divisible groups, p-adic Hodge theory, and Rapoport-Zink spaces, are thoroughly explained. Berkeley Lectures on p-adic Geometry will be a useful resource for students and scholars working in arithmetic geometry and number theory.

Motivic Integration and its Interactions with Model Theory and Non-Archimedean Geometry: Volume 1

Motivic Integration and its Interactions with Model Theory and Non-Archimedean Geometry: Volume 1
Title Motivic Integration and its Interactions with Model Theory and Non-Archimedean Geometry: Volume 1 PDF eBook
Author Raf Cluckers
Publisher Cambridge University Press
Pages 347
Release 2011-09-22
Genre Mathematics
ISBN 1139499793

Download Motivic Integration and its Interactions with Model Theory and Non-Archimedean Geometry: Volume 1 Book in PDF, Epub and Kindle

Assembles different theories of motivic integration for the first time, providing all of the necessary background for graduate students and researchers from algebraic geometry, model theory and number theory. In a rapidly-evolving area of research, this volume and Volume 2, which unite the several viewpoints and applications, will prove invaluable.

$p$-adic Geometry

$p$-adic Geometry
Title $p$-adic Geometry PDF eBook
Author Matthew Baker
Publisher American Mathematical Soc.
Pages 220
Release 2008
Genre Mathematics
ISBN 0821844687

Download $p$-adic Geometry Book in PDF, Epub and Kindle

"In recent decades, p-adic geometry and p-adic cohomology theories have become indispensable tools in number theory, algebraic geometry, and the theory of automorphic representations. The Arizona Winter Schoo1 2007, on which the current book is based, was a unique opportunity to introduce graduate students to this subject." "Following invaluable introductions by John Tate and Vladimir Berkovich, two pioneers of non-archimedean geometry, Brian Conrad's chapter introduces the general theory of Tate's rigid analytic spaces, Raynaud's view of them as the generic fibers of formal schemes, and Berkovich spaces. Samit Dasgupta and Jeremy Teitelbaum discuss the p-adic upper half plane as an example of a rigid analytic space and give applications to number theory (modular forms and the p-adic Langlands program). Matthew Baker offers a detailed discussion of the Berkovich projective line and p-adic potential theory on that and more general Berkovich curves. Finally, Kiran Kedlaya discusses theoretical and computational aspects of p-adic cohomology and the zeta functions of varieties. This book will be a welcome addition to the library of any graduate student and researcher who is interested in learning about the techniques of p-adic geometry."--BOOK JACKET.

Motivic Integration

Motivic Integration
Title Motivic Integration PDF eBook
Author Antoine Chambert-Loir
Publisher Springer
Pages 541
Release 2018-09-15
Genre Mathematics
ISBN 149397887X

Download Motivic Integration Book in PDF, Epub and Kindle

This monograph focuses on the geometric theory of motivic integration, which takes its values in the Grothendieck ring of varieties. This theory is rooted in a groundbreaking idea of Kontsevich and was further developed by Denef & Loeser and Sebag. It is presented in the context of formal schemes over a discrete valuation ring, without any restriction on the residue characteristic. The text first discusses the main features of the Grothendieck ring of varieties, arc schemes, and Greenberg schemes. It then moves on to motivic integration and its applications to birational geometry and non-Archimedean geometry. Also included in the work is a prologue on p-adic analytic manifolds, which served as a model for motivic integration. With its extensive discussion of preliminaries and applications, this book is an ideal resource for graduate students of algebraic geometry and researchers of motivic integration. It will also serve as a motivation for more recent and sophisticated theories that have been developed since.

Perfectoid Spaces

Perfectoid Spaces
Title Perfectoid Spaces PDF eBook
Author Bhargav Bhatt
Publisher American Mathematical Society
Pages 297
Release 2022-02-04
Genre Mathematics
ISBN 1470465108

Download Perfectoid Spaces Book in PDF, Epub and Kindle

Introduced by Peter Scholze in 2011, perfectoid spaces are a bridge between geometry in characteristic 0 and characteristic $p$, and have been used to solve many important problems, including cases of the weight-monodromy conjecture and the association of Galois representations to torsion classes in cohomology. In recognition of the transformative impact perfectoid spaces have had on the field of arithmetic geometry, Scholze was awarded a Fields Medal in 2018. This book, originating from a series of lectures given at the 2017 Arizona Winter School on perfectoid spaces, provides a broad introduction to the subject. After an introduction with insight into the history and future of the subject by Peter Scholze, Jared Weinstein gives a user-friendly and utilitarian account of the theory of adic spaces. Kiran Kedlaya further develops the foundational material, studies vector bundles on Fargues–Fontaine curves, and introduces diamonds and shtukas over them with a view toward the local Langlands correspondence. Bhargav Bhatt explains the application of perfectoid spaces to comparison isomorphisms in $p$-adic Hodge theory. Finally, Ana Caraiani explains the application of perfectoid spaces to the construction of Galois representations associated to torsion classes in the cohomology of locally symmetric spaces for the general linear group. This book will be an invaluable asset for any graduate student or researcher interested in the theory of perfectoid spaces and their applications.