Lectures on Advances in Combinatorics
Title | Lectures on Advances in Combinatorics PDF eBook |
Author | Rudolf Ahlswede |
Publisher | Springer Science & Business Media |
Pages | 324 |
Release | 2008-05-17 |
Genre | Mathematics |
ISBN | 3540786023 |
The lectures concentrate on highlights in Combinatorial (ChaptersII and III) and Number Theoretical (ChapterIV) Extremal Theory, in particular on the solution of famous problems which were open for many decades. However, the organization of the lectures in six chapters does neither follow the historic developments nor the connections between ideas in several cases. With the speci?ed auxiliary results in ChapterI on Probability Theory, Graph Theory, etc., all chapters can be read and taught independently of one another. In addition to the 16 lectures organized in 6 chapters of the main part of the book, there is supplementary material for most of them in the Appendix. In parti- lar, there are applications and further exercises, research problems, conjectures, and even research programs. The following books and reports [B97], [ACDKPSWZ00], [A01], and [ABCABDM06], mostly of the authors, are frequently cited in this book, especially in the Appendix, and we therefore mark them by short labels as [B], [N], [E], and [G]. We emphasize that there are also “Exercises” in [B], a “Problem Section” with contributions by several authors on pages 1063–1105 of [G], which are often of a combinatorial nature, and “Problems and Conjectures” on pages 172–173 of [E].
Lectures in Geometric Combinatorics
Title | Lectures in Geometric Combinatorics PDF eBook |
Author | Rekha R. Thomas |
Publisher | American Mathematical Soc. |
Pages | 156 |
Release | 2006 |
Genre | Mathematics |
ISBN | 9780821841402 |
This book presents a course in the geometry of convex polytopes in arbitrary dimension, suitable for an advanced undergraduate or beginning graduate student. The book starts with the basics of polytope theory. Schlegel and Gale diagrams are introduced as geometric tools to visualize polytopes in high dimension and to unearth bizarre phenomena in polytopes. The heart of the book is a treatment of the secondary polytope of a point configuration and its connections to the statepolytope of the toric ideal defined by the configuration. These polytopes are relatively recent constructs with numerous connections to discrete geometry, classical algebraic geometry, symplectic geometry, and combinatorics. The connections rely on Grobner bases of toric ideals and other methods fromcommutative algebra. The book is self-contained and does not require any background beyond basic linear algebra. With numerous figures and exercises, it can be used as a textbook for courses on geometric, combinatorial, and computational aspects of the theory of polytopes.
Lectures on the Combinatorics of Free Probability
Title | Lectures on the Combinatorics of Free Probability PDF eBook |
Author | Alexandru Nica |
Publisher | Cambridge University Press |
Pages | 430 |
Release | 2006-09-07 |
Genre | Mathematics |
ISBN | 0521858526 |
This 2006 book is a self-contained introduction to free probability theory suitable for an introductory graduate level course.
Lessons in Enumerative Combinatorics
Title | Lessons in Enumerative Combinatorics PDF eBook |
Author | Ömer Eğecioğlu |
Publisher | Springer Nature |
Pages | 479 |
Release | 2021-05-13 |
Genre | Mathematics |
ISBN | 3030712508 |
This textbook introduces enumerative combinatorics through the framework of formal languages and bijections. By starting with elementary operations on words and languages, the authors paint an insightful, unified picture for readers entering the field. Numerous concrete examples and illustrative metaphors motivate the theory throughout, while the overall approach illuminates the important connections between discrete mathematics and theoretical computer science. Beginning with the basics of formal languages, the first chapter quickly establishes a common setting for modeling and counting classical combinatorial objects and constructing bijective proofs. From here, topics are modular and offer substantial flexibility when designing a course. Chapters on generating functions and partitions build further fundamental tools for enumeration and include applications such as a combinatorial proof of the Lagrange inversion formula. Connections to linear algebra emerge in chapters studying Cayley trees, determinantal formulas, and the combinatorics that lie behind the classical Cayley–Hamilton theorem. The remaining chapters range across the Inclusion-Exclusion Principle, graph theory and coloring, exponential structures, matching and distinct representatives, with each topic opening many doors to further study. Generous exercise sets complement all chapters, and miscellaneous sections explore additional applications. Lessons in Enumerative Combinatorics captures the authors' distinctive style and flair for introducing newcomers to combinatorics. The conversational yet rigorous presentation suits students in mathematics and computer science at the graduate, or advanced undergraduate level. Knowledge of single-variable calculus and the basics of discrete mathematics is assumed; familiarity with linear algebra will enhance the study of certain chapters.
Combinatorics Advances
Title | Combinatorics Advances PDF eBook |
Author | Charles J. Colbourn |
Publisher | Springer Science & Business Media |
Pages | 331 |
Release | 2013-12-01 |
Genre | Mathematics |
ISBN | 146133554X |
On March 28~31, 1994 (Farvardin 8~11, 1373 by Iranian calendar), the Twenty fifth Annual Iranian Mathematics Conference (AIMC25) was held at Sharif University of Technology in Tehran, Islamic Republic of Iran. Its sponsors in~ eluded the Iranian Mathematical Society, and the Department of Mathematical Sciences at Sharif University of Technology. Among the keynote speakers were Professor Dr. Andreas Dress and Professor Richard K. Guy. Their plenary lec~ tures on combinatorial themes were complemented by invited and contributed lectures in a Combinatorics Session. This book is a collection of refereed papers, submitted primarily by the participants after the conference. The topics covered are diverse, spanning a wide range of combinatorics and al~ lied areas in discrete mathematics. Perhaps the strength and variety of the pa~ pers here serve as the best indications that combinatorics is advancing quickly, and that the Iranian mathematics community contains very active contributors. We hope that you find the papers mathematically stimulating, and look forward to a long and productive growth of combinatorial mathematics in Iran.
Geometric Graphs and Arrangements
Title | Geometric Graphs and Arrangements PDF eBook |
Author | Stefan Felsner |
Publisher | Springer Science & Business Media |
Pages | 179 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3322803031 |
Among the intuitively appealing aspects of graph theory is its close connection to drawings and geometry. The development of computer technology has become a source of motivation to reconsider these connections, in particular geometric graphs are emerging as a new subfield of graph theory. Arrangements of points and lines are the objects for many challenging problems and surprising solutions in combinatorial geometry. The book is a collection of beautiful and partly very recent results from the intersection of geometry, graph theory and combinatorics.
Geometric Combinatorics
Title | Geometric Combinatorics PDF eBook |
Author | Ezra Miller |
Publisher | American Mathematical Soc. |
Pages | 705 |
Release | 2007 |
Genre | Combinatorial analysis |
ISBN | 0821837362 |
Geometric combinatorics describes a wide area of mathematics that is primarily the study of geometric objects and their combinatorial structure. This text is a compilation of expository articles at the interface between combinatorics and geometry.