Lectures on Probability Theory and Mathematical Statistics - 3rd Edition
Title | Lectures on Probability Theory and Mathematical Statistics - 3rd Edition PDF eBook |
Author | Marco Taboga |
Publisher | Createspace Independent Publishing Platform |
Pages | 670 |
Release | 2017-12-08 |
Genre | Mathematical statistics |
ISBN | 9781981369195 |
The book is a collection of 80 short and self-contained lectures covering most of the topics that are usually taught in intermediate courses in probability theory and mathematical statistics. There are hundreds of examples, solved exercises and detailed derivations of important results. The step-by-step approach makes the book easy to understand and ideal for self-study. One of the main aims of the book is to be a time saver: it contains several results and proofs, especially on probability distributions, that are hard to find in standard references and are scattered here and there in more specialistic books. The topics covered by the book are as follows. PART 1 - MATHEMATICAL TOOLS: set theory, permutations, combinations, partitions, sequences and limits, review of differentiation and integration rules, the Gamma and Beta functions. PART 2 - FUNDAMENTALS OF PROBABILITY: events, probability, independence, conditional probability, Bayes' rule, random variables and random vectors, expected value, variance, covariance, correlation, covariance matrix, conditional distributions and conditional expectation, independent variables, indicator functions. PART 3 - ADDITIONAL TOPICS IN PROBABILITY THEORY: probabilistic inequalities, construction of probability distributions, transformations of probability distributions, moments and cross-moments, moment generating functions, characteristic functions. PART 4 - PROBABILITY DISTRIBUTIONS: Bernoulli, binomial, Poisson, uniform, exponential, normal, Chi-square, Gamma, Student's t, F, multinomial, multivariate normal, multivariate Student's t, Wishart. PART 5 - MORE DETAILS ABOUT THE NORMAL DISTRIBUTION: linear combinations, quadratic forms, partitions. PART 6 - ASYMPTOTIC THEORY: sequences of random vectors and random variables, pointwise convergence, almost sure convergence, convergence in probability, mean-square convergence, convergence in distribution, relations between modes of convergence, Laws of Large Numbers, Central Limit Theorems, Continuous Mapping Theorem, Slutsky's Theorem. PART 7 - FUNDAMENTALS OF STATISTICS: statistical inference, point estimation, set estimation, hypothesis testing, statistical inferences about the mean, statistical inferences about the variance.
Introduction to Probability
Title | Introduction to Probability PDF eBook |
Author | Joseph K. Blitzstein |
Publisher | CRC Press |
Pages | 599 |
Release | 2014-07-24 |
Genre | Mathematics |
ISBN | 1466575573 |
Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.
Lectures and Conferences on Mathematical Statistics and Probability
Title | Lectures and Conferences on Mathematical Statistics and Probability PDF eBook |
Author | Jerzy Neyman |
Publisher | |
Pages | 332 |
Release | 1952 |
Genre | Mathematical statistics |
ISBN |
Lectures on Algebraic Statistics
Title | Lectures on Algebraic Statistics PDF eBook |
Author | Mathias Drton |
Publisher | Springer Science & Business Media |
Pages | 177 |
Release | 2009-04-25 |
Genre | Mathematics |
ISBN | 3764389052 |
How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.
Introduction to Mathematical Statistical Physics
Title | Introduction to Mathematical Statistical Physics PDF eBook |
Author | Robert Adolʹfovich Minlos |
Publisher | American Mathematical Soc. |
Pages | 114 |
Release | 2000 |
Genre | Mathematics |
ISBN | 0821813374 |
This book presents a mathematically rigorous approach to the main ideas and phenomena of statistical physics. The introduction addresses the physical motivation, focusing on the basic concept of modern statistical physics, that is the notion of Gibbsian random fields. Properties of Gibbsian fields are analysed in two ranges of physical parameters: "regular" (corresponding to high-temperature and low-density regimes) where no phase transition is exhibited, and "singular" (low temperature regimes) where such transitions occur. Next, a detailed approach to the analysis of the phenomena of phase transitions of the first kind, the Pirogov-Sinai theory, is presented. The author discusses this theory in a general way and illustrates it with the example of a lattice gas with three types of particles. The conclusion gives a brief review of recent developments arising from this theory. The volume is written for the beginner, yet advanced students will benefit from it as well. The book will serve nicely as a supplementary textbook for course study. The prerequisites are an elementary knowledge of mechanics, probability theory and functional analysis.
Popular Lectures on Mathematical Logic
Title | Popular Lectures on Mathematical Logic PDF eBook |
Author | Hao Wang |
Publisher | Courier Corporation |
Pages | 290 |
Release | 2014-09-22 |
Genre | Mathematics |
ISBN | 0486171043 |
Noted logician discusses both theoretical underpinnings and practical applications, exploring set theory, model theory, recursion theory and constructivism, proof theory, logic's relation to computer science, and other subjects. 1981 edition, reissued by Dover in 1993 with a new Postscript by the author.
Inequalities in Statistics and Probability
Title | Inequalities in Statistics and Probability PDF eBook |
Author | Yung Liang Tong |
Publisher | IMS |
Pages | 270 |
Release | 1984 |
Genre | Mathematics |
ISBN | 9780940600041 |