Least-Squares Finite Element Methods
Title | Least-Squares Finite Element Methods PDF eBook |
Author | Pavel B. Bochev |
Publisher | Springer Science & Business Media |
Pages | 669 |
Release | 2009-04-28 |
Genre | Mathematics |
ISBN | 0387689222 |
Since their emergence, finite element methods have taken a place as one of the most versatile and powerful methodologies for the approximate numerical solution of Partial Differential Equations. These methods are used in incompressible fluid flow, heat, transfer, and other problems. This book provides researchers and practitioners with a concise guide to the theory and practice of least-square finite element methods, their strengths and weaknesses, established successes, and open problems.
The Least-Squares Finite Element Method
Title | The Least-Squares Finite Element Method PDF eBook |
Author | Bo-nan Jiang |
Publisher | Springer Science & Business Media |
Pages | 444 |
Release | 1998-06-22 |
Genre | Computers |
ISBN | 9783540639343 |
This is the first monograph on the subject, providing a comprehensive introduction to the LSFEM method for numerical solution of PDEs. LSFEM is simple, efficient and robust, and can solve a wide range of problems in fluid dynamics and electromagnetics.
The Finite Element Method for Boundary Value Problems
Title | The Finite Element Method for Boundary Value Problems PDF eBook |
Author | Karan S. Surana |
Publisher | CRC Press |
Pages | 824 |
Release | 2016-11-17 |
Genre | Science |
ISBN | 1498780512 |
Written by two well-respected experts in the field, The Finite Element Method for Boundary Value Problems: Mathematics and Computations bridges the gap between applied mathematics and application-oriented computational studies using FEM. Mathematically rigorous, the FEM is presented as a method of approximation for differential operators that are mathematically classified as self-adjoint, non-self-adjoint, and non-linear, thus addressing totality of all BVPs in various areas of engineering, applied mathematics, and physical sciences. These classes of operators are utilized in various methods of approximation: Galerkin method, Petrov-Galerkin Method, weighted residual method, Galerkin method with weak form, least squares method based on residual functional, etc. to establish unconditionally stable finite element computational processes using calculus of variations. Readers are able to grasp the mathematical foundation of finite element method as well as its versatility of applications. h-, p-, and k-versions of finite element method, hierarchical approximations, convergence, error estimation, error computation, and adaptivity are additional significant aspects of this book.
The Least-Squares Finite Element Method
Title | The Least-Squares Finite Element Method PDF eBook |
Author | Bo-nan Jiang |
Publisher | Springer Science & Business Media |
Pages | 425 |
Release | 2013-03-14 |
Genre | Science |
ISBN | 3662037408 |
This is the first monograph on the subject, providing a comprehensive introduction to the LSFEM method for numerical solution of PDEs. LSFEM is simple, efficient and robust, and can solve a wide range of problems in fluid dynamics and electromagnetics.
The Mathematical Theory of Finite Element Methods
Title | The Mathematical Theory of Finite Element Methods PDF eBook |
Author | Susanne Brenner |
Publisher | Springer Science & Business Media |
Pages | 369 |
Release | 2013-03-14 |
Genre | Mathematics |
ISBN | 1475736584 |
A rigorous and thorough mathematical introduction to the subject; A clear and concise treatment of modern fast solution techniques such as multigrid and domain decomposition algorithms; Second edition contains two new chapters, as well as many new exercises; Previous edition sold over 3000 copies worldwide
The Finite Element Method: Theory, Implementation, and Applications
Title | The Finite Element Method: Theory, Implementation, and Applications PDF eBook |
Author | Mats G. Larson |
Publisher | Springer Science & Business Media |
Pages | 403 |
Release | 2013-01-13 |
Genre | Computers |
ISBN | 3642332870 |
This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.
An Introduction to Meshfree Methods and Their Programming
Title | An Introduction to Meshfree Methods and Their Programming PDF eBook |
Author | G.R. Liu |
Publisher | Springer Science & Business Media |
Pages | 497 |
Release | 2005-12-05 |
Genre | Technology & Engineering |
ISBN | 1402034687 |
The finite difference method (FDM) hasbeen used tosolve differential equation systems for centuries. The FDM works well for problems of simple geometry and was widely used before the invention of the much more efficient, robust finite element method (FEM). FEM is now widely used in handling problems with complex geometry. Currently, we are using and developing even more powerful numerical techniques aiming to obtain more accurate approximate solutions in a more convenient manner for even more complex systems. The meshfree or meshless method is one such phenomenal development in the past decade, and is the subject of this book. There are many MFree methods proposed so far for different applications. Currently, three monographs on MFree methods have been published. Mesh Free Methods, Moving Beyond the Finite Element Method d by GR Liu (2002) provides a systematic discussion on basic theories, fundamentals for MFree methods, especially on MFree weak-form methods. It provides a comprehensive record of well-known MFree methods and the wide coverage of applications of MFree methods to problems of solids mechanics (solids, beams, plates, shells, etc.) as well as fluid mechanics. The Meshless Local Petrov-Galerkin (MLPG) Method d by Atluri and Shen (2002) provides detailed discussions of the meshfree local Petrov-Galerkin (MLPG) method and itsvariations. Formulations and applications of MLPG are well addressed in their book.