Learning pandas

Learning pandas
Title Learning pandas PDF eBook
Author Michael Heydt
Publisher Packt Publishing Ltd
Pages 721
Release 2015-04-16
Genre Computers
ISBN 1783985135

Download Learning pandas Book in PDF, Epub and Kindle

If you are a Python programmer who wants to get started with performing data analysis using pandas and Python, this is the book for you. Some experience with statistical analysis would be helpful but is not mandatory.

Learning Pandas

Learning Pandas
Title Learning Pandas PDF eBook
Author Michael Heydt
Publisher
Pages 504
Release 2015-03-31
Genre Computers
ISBN 9781783985128

Download Learning Pandas Book in PDF, Epub and Kindle

Learning the Pandas Library

Learning the Pandas Library
Title Learning the Pandas Library PDF eBook
Author Matt Harrison
Publisher Createspace Independent Publishing Platform
Pages 0
Release 2016-06
Genre Data mining
ISBN 9781533598240

Download Learning the Pandas Library Book in PDF, Epub and Kindle

Python is one of the top 3 tools that Data Scientists use. One of the tools in their arsenal is the Pandas library. This tool is popular because it gives you so much functionality out of the box. In addition, you can use all the power of Python to make the hard stuff easy! Learning the Pandas Library is designed to bring developers and aspiring data scientists who are anxious to learn Pandas up to speed quickly. It starts with the fundamentals of the data structures. Then, it covers the essential functionality. It includes many examples, graphics, code samples, and plots from real world examples. The Content Covers: Installation Data Structures Series CRUD Series Indexing Series Methods Series Plotting Series Examples DataFrame Methods DataFrame Statistics Grouping, Pivoting, and Reshaping Dealing with Missing Data Joining DataFrames DataFrame Examples Preliminary Reviews This is an excellent introduction benefitting from clear writing and simple examples. The pandas documentation itself is large and sometimes assumes too much knowledge, in my opinion. Learning the Pandas Library bridges this gap for new users and even for those with some pandas experience such as me. -Garry C. I have finished reading Learning the Pandas Library and I liked it... very useful and helpful tips even for people who use pandas regularly. -Tom Z.

Pandas for Everyone

Pandas for Everyone
Title Pandas for Everyone PDF eBook
Author Daniel Y. Chen
Publisher Addison-Wesley Professional
Pages 1093
Release 2017-12-15
Genre Computers
ISBN 0134547055

Download Pandas for Everyone Book in PDF, Epub and Kindle

The Hands-On, Example-Rich Introduction to Pandas Data Analysis in Python Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets. Pandas for Everyone brings together practical knowledge and insight for solving real problems with Pandas, even if you’re new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world problems. Chen gives you a jumpstart on using Pandas with a realistic dataset and covers combining datasets, handling missing data, and structuring datasets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability, and introduces you to the wider Python data analysis ecosystem. Work with DataFrames and Series, and import or export data Create plots with matplotlib, seaborn, and pandas Combine datasets and handle missing data Reshape, tidy, and clean datasets so they’re easier to work with Convert data types and manipulate text strings Apply functions to scale data manipulations Aggregate, transform, and filter large datasets with groupby Leverage Pandas’ advanced date and time capabilities Fit linear models using statsmodels and scikit-learn libraries Use generalized linear modeling to fit models with different response variables Compare multiple models to select the “best” Regularize to overcome overfitting and improve performance Use clustering in unsupervised machine learning

Python for Data Analysis

Python for Data Analysis
Title Python for Data Analysis PDF eBook
Author Wes McKinney
Publisher "O'Reilly Media, Inc."
Pages 553
Release 2017-09-25
Genre Computers
ISBN 1491957611

Download Python for Data Analysis Book in PDF, Epub and Kindle

Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples

Learning Pandas 2.0

Learning Pandas 2.0
Title Learning Pandas 2.0 PDF eBook
Author Matthew Rosch
Publisher GitforGits
Pages 267
Release 2023-04-10
Genre Computers
ISBN 8119177061

Download Learning Pandas 2.0 Book in PDF, Epub and Kindle

"Learning Pandas 2.0" is an essential guide for anyone looking to harness the power of Python's premier data manipulation library. With this comprehensive resource, you will not only master core Pandas 2.0 concepts but also learn how to employ its advanced features to perform efficient data manipulation and analysis. Throughout the book, you will acquire a deep understanding of Pandas 2.0's data structures, indexing, and selection techniques. Gain expertise in loading, storing, and cleaning data from various file formats and sources, ensuring data integrity and consistency. As you progress, you will delve into advanced data transformation, merging, and aggregation methods to extract meaningful insights and generate insightful reports. "Learning Pandas 2.0" also covers specialized data processing needs like time series data, DateTime operations, and geospatial analysis. Furthermore, this book demonstrates how to integrate Pandas 2.0 with machine learning libraries like Scikit-learn, TensorFlow, and PyTorch for predictive analytics. This will empower you to build powerful data-driven models to solve complex problems and enhance your decision-making capabilities. Key Learnings Master core Pandas 2.0 concepts, including data structures, indexing, and selection for efficient data manipulation. Load, store, and clean data from various file formats and sources, ensuring data integrity and consistency. Perform advanced data transformation, merging, and aggregation techniques for insightful analysis and reporting. Harness time series data, DateTime operations, and geospatial analysis for specialized data processing needs. Visualize data effectively using Seaborn, Plotly, and advanced geospatial visualization tools. Integrate Pandas 2.0 with machine learning libraries like Scikit-learn, TensorFlow, and PyTorch for predictive analytics. Table of Content Introduction to Pandas 2.0 Data Read, Storage, and File Formats Indexing and Selecting Data Data Manipulation and Transformation Time Series and DateTime Operations Performance Optimization and Scaling Machine Learning with Pandas 2.0 Text Data and Natural Language Processing Geospatial Data Analysis

Thinking in Pandas

Thinking in Pandas
Title Thinking in Pandas PDF eBook
Author Hannah Stepanek
Publisher Apress
Pages 190
Release 2020-06-05
Genre Computers
ISBN 1484258398

Download Thinking in Pandas Book in PDF, Epub and Kindle

Understand and implement big data analysis solutions in pandas with an emphasis on performance. This book strengthens your intuition for working with pandas, the Python data analysis library, by exploring its underlying implementation and data structures. Thinking in Pandas introduces the topic of big data and demonstrates concepts by looking at exciting and impactful projects that pandas helped to solve. From there, you will learn to assess your own projects by size and type to see if pandas is the appropriate library for your needs. Author Hannah Stepanek explains how to load and normalize data in pandas efficiently, and reviews some of the most commonly used loaders and several of their most powerful options. You will then learn how to access and transform data efficiently, what methods to avoid, and when to employ more advanced performance techniques. You will also go over basic data access and munging in pandas and the intuitive dictionary syntax. Choosing the right DataFrame format, working with multi-level DataFrames, and how pandas might be improved upon in the future are also covered. By the end of the book, you will have a solid understanding of how the pandas library works under the hood. Get ready to make confident decisions in your own projects by utilizing pandas—the right way. What You Will Learn Understand the underlying data structure of pandas and why it performs the way it does under certain circumstancesDiscover how to use pandas to extract, transform, and load data correctly with an emphasis on performanceChoose the right DataFrame so that the data analysis is simple and efficient.Improve performance of pandas operations with other Python libraries Who This Book Is ForSoftware engineers with basic programming skills in Python keen on using pandas for a big data analysis project. Python software developers interested in big data.