Knowledge Discovery from Data Streams
Title | Knowledge Discovery from Data Streams PDF eBook |
Author | Joao Gama |
Publisher | CRC Press |
Pages | 256 |
Release | 2010-05-25 |
Genre | Business & Economics |
ISBN | 1439826129 |
Since the beginning of the Internet age and the increased use of ubiquitous computing devices, the large volume and continuous flow of distributed data have imposed new constraints on the design of learning algorithms. Exploring how to extract knowledge structures from evolving and time-changing data, Knowledge Discovery from Data Streams presents
Machine Learning for Data Streams
Title | Machine Learning for Data Streams PDF eBook |
Author | Albert Bifet |
Publisher | MIT Press |
Pages | 262 |
Release | 2018-03-16 |
Genre | Computers |
ISBN | 0262346052 |
A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework. Today many information sources—including sensor networks, financial markets, social networks, and healthcare monitoring—are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations. The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining. Most of these chapters include exercises, an MOA-based lab session, or both. Finally, the book discusses the MOA software, covering the MOA graphical user interface, the command line, use of its API, and the development of new methods within MOA. The book will be an essential reference for readers who want to use data stream mining as a tool, researchers in innovation or data stream mining, and programmers who want to create new algorithms for MOA.
Adaptive and Intelligent Systems
Title | Adaptive and Intelligent Systems PDF eBook |
Author | Abdelhamid Bouchachia |
Publisher | Springer Science & Business Media |
Pages | 441 |
Release | 2011-08-26 |
Genre | Computers |
ISBN | 3642238564 |
This book constitutes the proceedings of the International Conference on Adaptive and Intelligent Systems, ICAIS 2011, held in Klagenfurt, Austria, in September 2011. The 36 full papers included in these proceedings together with the abstracts of 4 invited talks, were carefully reviewed and selected from 72 submissions. The contributions are organized under the following topical sections: incremental learning; adaptive system architecture; intelligent system engineering; data mining and pattern recognition; intelligent agents; and computational intelligence.
Learning from Data Streams
Title | Learning from Data Streams PDF eBook |
Author | João Gama |
Publisher | Springer Science & Business Media |
Pages | 486 |
Release | 2007-10-11 |
Genre | Computers |
ISBN | 3540736786 |
Processing data streams has raised new research challenges over the last few years. This book provides the reader with a comprehensive overview of stream data processing, including famous prototype implementations like the Nile system and the TinyOS operating system. Applications in security, the natural sciences, and education are presented. The huge bibliography offers an excellent starting point for further reading and future research.
Learning from Data Streams in Evolving Environments
Title | Learning from Data Streams in Evolving Environments PDF eBook |
Author | Moamar Sayed-Mouchaweh |
Publisher | Springer |
Pages | 320 |
Release | 2018-07-28 |
Genre | Technology & Engineering |
ISBN | 3319898035 |
This edited book covers recent advances of techniques, methods and tools treating the problem of learning from data streams generated by evolving non-stationary processes. The goal is to discuss and overview the advanced techniques, methods and tools that are dedicated to manage, exploit and interpret data streams in non-stationary environments. The book includes the required notions, definitions, and background to understand the problem of learning from data streams in non-stationary environments and synthesizes the state-of-the-art in the domain, discussing advanced aspects and concepts and presenting open problems and future challenges in this field. Provides multiple examples to facilitate the understanding data streams in non-stationary environments; Presents several application cases to show how the methods solve different real world problems; Discusses the links between methods to help stimulate new research and application directions.
Machine Learning and Knowledge Discovery in Databases
Title | Machine Learning and Knowledge Discovery in Databases PDF eBook |
Author | Wray Buntine |
Publisher | Springer Science & Business Media |
Pages | 787 |
Release | 2009-09-03 |
Genre | Computers |
ISBN | 3642041736 |
This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2009, held in Bled, Slovenia, in September 2009. The 106 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 422 paper submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.
Learning in Non-Stationary Environments
Title | Learning in Non-Stationary Environments PDF eBook |
Author | Moamar Sayed-Mouchaweh |
Publisher | Springer Science & Business Media |
Pages | 439 |
Release | 2012-04-13 |
Genre | Technology & Engineering |
ISBN | 1441980202 |
Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences. Learning in Non-Stationary Environments: Methods and Applications offers a wide-ranging, comprehensive review of recent developments and important methodologies in the field. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems. A later section is dedicated to applications in which dynamic learning methods serve as keystones for achieving models with high accuracy. Rather than rely on a mathematical theorem/proof style, the editors highlight numerous figures, tables, examples and applications, together with their explanations. This approach offers a useful basis for further investigation and fresh ideas and motivates and inspires newcomers to explore this promising and still emerging field of research.